Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Xiao Lei, Liang Qinglin. THE TECHNOLOGY TO REJECT MAI IN DS/CDMA SYSTEM[J]. Journal of Electronics & Information Technology, 2000, 22(2): 316-324.
Citation: Yan WANG, Qing LI, Guangpu ZHANG. On Anti-outlier Localization for Integrated Long Baseline/Ultra-short Baseline Systems[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2578-2583. doi: 10.11999/JEIT180056

On Anti-outlier Localization for Integrated Long Baseline/Ultra-short Baseline Systems

doi: 10.11999/JEIT180056
Funds:  The National Natural Science Foundation of China (61405041), The National Key Research and Development Program (2017YFC0306900), The Technology Basic Research Program (JSJL2016604B003), The Qingdao National Laboratory for Marine Science and Technology Open Fund (QNLM2016ORP0102)
  • Received Date: 2018-01-16
  • Rev Recd Date: 2018-07-09
  • Available Online: 2018-07-18
  • Publish Date: 2018-11-01
  • Complicated underwater environment puts forward high requirements on the fault-tolerant and reliability of underwater acoustic localization systems. An anti-outlier localization method based on K-Means Clustering and Decision Fusion (KMCDF) is proposed for integrated Long baseline/Ultra-Short BaseLine (L/USBL) systems. Firstly, the target position is preliminarily estimated by the multi-parameter redundant information measured by the integrated system. Then, the clustering degree of the preliminary coordinates is analyzed by k-means clustering. According to the incompatibility between outliers and normal parameters, the outliers are identified by the decision fusion method. Furthermore, the impact of outliers on positioning is eliminated. Simulation analysis shows that the proposed method fully incorporates the multi-parameter information, and the tolerance of outliers is better than the existing anti-outlier positioning methods based on the time-delay parameter. Lake trial results demonstrate further the effectiveness of the proposed method.
  • BAYAT M, CRASTA N, AGUIAR A P, et al. Range-based underwater vehicle localization in the presence of unknown ocean currents: theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 122–139 doi: 10.1109/TCST.2015.2420636
    RAMEZANI H, FAZEL F, STOJANOVIC M, et al. Collision tolerant and collision free packet scheduling for underwater acoustic localization[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2584–2595 doi: 10.1109/TWC.2015.2389220
    汝小虎, 柳征, 姜文利, 等. 带虚警抑制的基于归一化残差的野值检测方法[J]. 电子与信息学报, 2015, 37(12): 2898–2905 doi: 10.11999/JEIT150469

    RU Xiaohu, LIU Zheng, JIANG Wenli, et al. Normalized residual-based outlier detection with false-alarm probability controlling[J].Journal of Electronics&Information Technology, 2015, 37(12): 2898–2905 doi: 10.11999/JEIT150469
    庞菲菲, 张群飞, 史文涛, 等. 基于Parzen窗的水下无线传感器网络目标定位方法[J]. 电子与信息学报, 2017, 39(1): 45–50 doi: 10.11999/JEIT160246

    PANG Feifei, ZHANG Qunfei, SHI Wentao, et al. Target localization method based on Parzen window in underwater wireless sensor network[J]. Journal of Electronics&Information Technology, 2017, 39(1): 45–50 doi: 10.11999/JEIT160246
    LIU Donggang, NING Peng, and DU Wenliang Kevin. Attack-resistant location estimation in sensor networks[C]. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, USA, 2005: 99–106.
    LIU Donggang, NING Peng, LIU An, et al. Attack-resistant location estimation in wireless sensor networks[J]. ACM Transactions on Information and System Security, 2008, 11(4): 1–39 doi: 10.1145/1380564.1380570
    LI Zang, TRAPPE W, ZHANG Yanyong, et al. Robust statistical methods for securing wireless localization in sensor networks[C]. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, USA, 2005: 91–98.
    KORKMAZ S and VEEN A J V D. Robust localization in sensor networks with iterative majorization techniques[C]. Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 2049–2052.
    张天骐, 杨强, 宋玉龙, 等. 一种K-means改进算法的软扩频信号伪码序列盲估计[J]. 电子与信息学报, 2018, 40(1): 226–234 doi: 10.11999/JEIT170306

    ZHANG Tianqi, YANG Qiang, SONG Yulong, et al. Blind estimation PN sequence in soft spread spectrum signal of improved k-means algorithm[J]. Journal of Electronics&Information Technology, 2018, 40(1): 226–234 doi: 10.11999/JEIT170306
    朱明. 数据挖掘[M]. 合肥: 中国科技大学出版社, 2002: 22, 139–157.

    ZHU Ming. Data Mining[M]. Hefei: University of Science and Technology of China Press, 2002: 22, 139–157.
    韩云峰, 李昭, 郑翠娥, 等. 一种基于长基线交汇的超短基线定位系统精度评价方法[J]. 物理学报, 2015, 64(9): 094301 doi: 10.7498/aps.64.094301

    HAN Yunfeng, LI Zhao, ZHENG Cuie, et al. A precision evaluation method of USBL positioning systems based on LBL triangulation[J]. Acta Physica Sinica, 2015, 64(9): 094301 doi: 10.7498/aps.64.094301
    王燕, 岳剑平, 冯海泓. 双基阵纯方位目标运动分析研究[J]. 声学学报, 2001, 26(5): 405–409 doi: 10.15949/j.cnki.0371-0025.2001.05.005

    WANG Yan, YUE Jianping, and FENG Haihong. Study on bearings-only target motion analysis based on association of dual arrays[J]. Acta Acustica, 2001, 26(5): 405–409 doi: 10.15949/j.cnki.0371-0025.2001.05.005
    付进. 长基线定位信号处理若干关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2007.

    FU Jin. Research on several key techniques of the signal processing for long baseline location[D]. [Ph.D. dissertation], Harbin Engineering University, 2007.
    张捍东, 孙成慧, 岑豫皖. 分布式多传感器结构中的数据融合方法[J]. 华中科技大学学报, 2008, 36(6): 37–39 doi: 10.13245/j.hust.2008.06.036

    ZHANG Handong, SUN Chenghui, and CEN Yuwan. Data fusion method for the configuration of distributed multi-sensor[J]. Journal of Huazhong University of Science and Technology, 2008, 36(6): 37–39 doi: 10.13245/j.hust.2008.06.036
    蒋正新, 施国梁. 矩阵理论及其应用[M]. 北京: 北京航空学院出版社, 1988: 371–378.

    JIANG Zhengxin and SHI Guoliang. Matrix Theory and Application[M]. Beijing: Beihang University Press, 1988: 371–378.
    梁继民. 多传感器决策融合方法研究[D]. [博士论文], 西安电子科技大学, 1999.

    LIANG Jimin. Study of multisensor decision fusion[D]. [Ph.D. dissertation], Xidian University, 1999.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.5 %FULLTEXT: 31.5 %META: 66.3 %META: 66.3 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %其他: 0.4 %其他: 0.4 %China: 0.6 %China: 0.6 %Falls Church: 0.2 %Falls Church: 0.2 %Germany: 0.1 %Germany: 0.1 %Kao-sung: 0.2 %Kao-sung: 0.2 %United States: 0.1 %United States: 0.1 %XX: 0.5 %XX: 0.5 %[]: 4.3 %[]: 4.3 %三亚: 0.1 %三亚: 0.1 %三门峡: 0.0 %三门峡: 0.0 %上海: 0.8 %上海: 0.8 %东莞: 0.0 %东莞: 0.0 %临汾: 0.1 %临汾: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %儋州: 0.1 %儋州: 0.1 %兰州: 0.1 %兰州: 0.1 %加尔各答: 0.1 %加尔各答: 0.1 %北京: 16.3 %北京: 16.3 %北京市: 0.1 %北京市: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.5 %南京: 0.5 %南京市: 0.0 %南京市: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 1.0 %哈尔滨: 1.0 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.2 %太原: 0.2 %宣城: 0.2 %宣城: 0.2 %巴彦淖尔: 0.1 %巴彦淖尔: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.6 %广州: 0.6 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.2 %扬州: 0.2 %抚州: 0.0 %抚州: 0.0 %新乡: 0.2 %新乡: 0.2 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.0 %景德镇: 0.0 %杭州: 0.7 %杭州: 0.7 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %栃木: 0.1 %栃木: 0.1 %桂林: 0.0 %桂林: 0.0 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.0 %泉州: 0.0 %泰安: 0.0 %泰安: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %海口: 0.1 %海口: 0.1 %淮北: 0.0 %淮北: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.0 %温州: 0.0 %漯河: 0.4 %漯河: 0.4 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.3 %石家庄: 0.3 %石家庄市: 0.0 %石家庄市: 0.0 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 12.2 %芒廷维尤: 12.2 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.7 %芝加哥: 0.7 %莫斯科: 0.0 %莫斯科: 0.0 %莱芜: 0.0 %莱芜: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西双版纳傣族自治州: 0.0 %西双版纳傣族自治州: 0.0 %西孟加拉邦: 0.0 %西孟加拉邦: 0.0 %西宁: 42.0 %西宁: 42.0 %西安: 0.8 %西安: 0.8 %贵阳: 0.1 %贵阳: 0.1 %辛辛那提: 0.0 %辛辛那提: 0.0 %达勒姆: 0.0 %达勒姆: 0.0 %运城: 0.2 %运城: 0.2 %迪庆: 0.0 %迪庆: 0.0 %郑州: 1.4 %郑州: 1.4 %郑州市: 0.1 %郑州市: 0.1 %重庆: 0.1 %重庆: 0.1 %铜陵: 0.0 %铜陵: 0.0 %长沙: 0.4 %长沙: 0.4 %长治: 0.3 %长治: 0.3 %青岛: 0.3 %青岛: 0.3 %首尔特别: 0.1 %首尔特别: 0.1 %黄冈: 0.0 %黄冈: 0.0 %其他其他ChinaFalls ChurchGermanyKao-sungUnited StatesXX[]三亚三门峡上海东莞临汾佳木斯儋州兰州加尔各答北京北京市十堰南京南京市南昌南通台北台州吉林呼和浩特哈尔滨嘉兴大连天津太原宣城巴彦淖尔常州常德广州廊坊张家口徐州成都扬州抚州新乡昆明景德镇杭州枣庄柳州栃木桂林武汉沈阳泉州泰安洛阳济南海口淮北深圳温州漯河玉林石家庄石家庄市福州秦皇岛绍兴芒廷维尤芜湖芝加哥莫斯科莱芜襄阳西双版纳傣族自治州西孟加拉邦西宁西安贵阳辛辛那提达勒姆运城迪庆郑州郑州市重庆铜陵长沙长治青岛首尔特别黄冈Highcharts.com

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (1710) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return