Advanced Search
Volume 40 Issue 10
Sep.  2018
Turn off MathJax
Article Contents
Shanxue CHEN, Yanqi ZHANG. Hyperspectral Image Compression Based on Adaptive Band Clustering Principal Component Analysis and Back Propagation Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2478-2483. doi: 10.11999/JEIT180055
Citation: Shanxue CHEN, Yanqi ZHANG. Hyperspectral Image Compression Based on Adaptive Band Clustering Principal Component Analysis and Back Propagation Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2478-2483. doi: 10.11999/JEIT180055

Hyperspectral Image Compression Based on Adaptive Band Clustering Principal Component Analysis and Back Propagation Neural Network

doi: 10.11999/JEIT180055
Funds:  The National Natural Science Foundation of China (61271260), The Science and Technology Research Item of Chongqing Education Commission (KJ1400416)
  • Received Date: 2018-01-16
  • Rev Recd Date: 2018-05-24
  • Available Online: 2018-07-30
  • Publish Date: 2018-10-01
  • Hyperspectral remote sensing images have a wealth of spectral information and a huge universe of data. In order to utilize effectively hyperspectral image data and promote the development of hyperspectral remote sensing technology, a hyperspectral image compression algorithm based on adaptive band clustering Principal Component Analysis (PCA) and Back Propagation (BP) neural network is proposed. Affinity Propagation (AP) clustering algorithm for adaptive band clustering is used, and PCA is performed on the each band group respectively after clustering. Finally, all principal components are encoded and compressed by BP neural network. The innovation point lies in BP neural network compressed image during the training step, the error of backpropagation is to compare difference between the original image and the output image, and then adjust the weight and threshold of each layer in the reverse direction. Band clustering of hyperspectral images can not only effectively utilize the spectral correlation and improve the compression performance, but also reduce the computational complexity of PCA. Experimental results investigate that the proposed algorithm achieve a better performance on Signal-to-Noise Ratio (SNR) and spectral angle than other algorithm under the same compression ratio.
  • loading
  • BIOUCA-DIAS J, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36 doi: 10.1109/MGRS.2013.2244672
    SHEN Hongda, PAN W D, WU Dongsheng, et al. Fast Golomb coding parameter estimation using partial data and its application in hyperspectral image compression[C]. Southeastcon, Norfolk, USA, 2016: 1–7.
    FU Wei, LI Shutao, FANG Leyuan, et al. Adaptive spectral–spatial compression of hyperspectral image with sparse representation[J]. IEEE Transactions on Geoscience&Remote Sensing, 2017, 55(2): 671–682 doi: 10.1109/TGRS.2016.2613848
    LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17–28 doi: 10.1109/79.974718
    陈善学, 韩勇, 于佳佳, 等. 矢量维数分割量化的高光谱图像压缩方法[J]. 系统工程与电子技术, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31

    CHEN Shanxue, HAN Yong, YU Jiajia, et al. Compression algorithm of hyperspectral image based on vector dimension segmentation quantization[J]. Journal of Systems Engineering and Electronics, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31
    KARAMI A, YAZDI M, and MERCIER G. Compression of hyperspectral images using discrete wavelet transform and tucker decomposition[J]. IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 444–450 doi: 10.1109/JSTARS.2012.2189200
    MIELIKAINEN J and HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1118–1121 doi: 10.1109/LGRS.2012.2191531
    ZHU Shiping and ZONG Xianzi. Fractal lossy hyperspectral image coding algorithm based on prediction[J]. IEEE Access, 2017, 5: 21250–21257 doi: 10.1109/ACESS.2017.2755681
    SHEN Hongda, PAN W D, and WU Dongsheng. Predictive lossless compression of regions of interest in hyperspectral images with no-data regions[J]. IEEE Transactions on Geoscience&Remote Sensing, 2016, 55(1): 173–182 doi: 10.1109/TGRS.2016.2603527
    WEN Jia, MA Caiwen, and ZHAO Junsuo. FIVQ algorithm for interference hyper-spectral image compression[J].Optics Communications, 2014, 322(8): 97–104 doi: 10.1016/j.optcom.2014.02.016
    韩力群. 人工神经网络理论、设计及应用[M]. 第2版, 北京: 化学工业出版社, 2007: 第3章.

    HAN Liqun. Artificial Neural Network Theory, Design and Application[M]. Second Edition, Beijing: Chemical Press, 2007: Chapter three.
    吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214

    WU Qian, ZHANG Rong, and XU Dawei. Hyperspectral data compression based on sparse representation[J]. Journal of Electronica&Information Technology, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214
    高放, 孙长建, 邵庆龙, 等. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439

    GAO Fang, SUN Changjian, SHAO Qinglong, et al. Lossless compression of hyperspectral image using K-means clustering and conventional recursive least-squares predictor[J]. Journal of Electronica&Information Technology, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439
    FOWLER J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230–2242 doi: 10.1109/TIP.2009.2025089
    WEI Jia. Application of hybrid back propagation neural network in image compression[C]. International Conference on Intelligent Computation Technology and Automation, Nanchang, China, 2016: 209–212.
    闫红梅, 吴冬梅. 改进BP网络在超光谱图像压缩中的应用[J]. 图学学报, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022

    YAN Hongmei and WU Dongmei. Application of improved BP neural network in hyperspectral image compression[J]. Journal of Engineering Graphics, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (1517) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return