Citation: | Shanxue CHEN, Yanqi ZHANG. Hyperspectral Image Compression Based on Adaptive Band Clustering Principal Component Analysis and Back Propagation Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2478-2483. doi: 10.11999/JEIT180055 |
BIOUCA-DIAS J, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36 doi: 10.1109/MGRS.2013.2244672
|
SHEN Hongda, PAN W D, WU Dongsheng, et al. Fast Golomb coding parameter estimation using partial data and its application in hyperspectral image compression[C]. Southeastcon, Norfolk, USA, 2016: 1–7.
|
FU Wei, LI Shutao, FANG Leyuan, et al. Adaptive spectral–spatial compression of hyperspectral image with sparse representation[J]. IEEE Transactions on Geoscience&Remote Sensing, 2017, 55(2): 671–682 doi: 10.1109/TGRS.2016.2613848
|
LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17–28 doi: 10.1109/79.974718
|
陈善学, 韩勇, 于佳佳, 等. 矢量维数分割量化的高光谱图像压缩方法[J]. 系统工程与电子技术, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31
CHEN Shanxue, HAN Yong, YU Jiajia, et al. Compression algorithm of hyperspectral image based on vector dimension segmentation quantization[J]. Journal of Systems Engineering and Electronics, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31
|
KARAMI A, YAZDI M, and MERCIER G. Compression of hyperspectral images using discrete wavelet transform and tucker decomposition[J]. IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 444–450 doi: 10.1109/JSTARS.2012.2189200
|
MIELIKAINEN J and HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1118–1121 doi: 10.1109/LGRS.2012.2191531
|
ZHU Shiping and ZONG Xianzi. Fractal lossy hyperspectral image coding algorithm based on prediction[J]. IEEE Access, 2017, 5: 21250–21257 doi: 10.1109/ACESS.2017.2755681
|
SHEN Hongda, PAN W D, and WU Dongsheng. Predictive lossless compression of regions of interest in hyperspectral images with no-data regions[J]. IEEE Transactions on Geoscience&Remote Sensing, 2016, 55(1): 173–182 doi: 10.1109/TGRS.2016.2603527
|
WEN Jia, MA Caiwen, and ZHAO Junsuo. FIVQ algorithm for interference hyper-spectral image compression[J].Optics Communications, 2014, 322(8): 97–104 doi: 10.1016/j.optcom.2014.02.016
|
韩力群. 人工神经网络理论、设计及应用[M]. 第2版, 北京: 化学工业出版社, 2007: 第3章.
HAN Liqun. Artificial Neural Network Theory, Design and Application[M]. Second Edition, Beijing: Chemical Press, 2007: Chapter three.
|
吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214
WU Qian, ZHANG Rong, and XU Dawei. Hyperspectral data compression based on sparse representation[J]. Journal of Electronica&Information Technology, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214
|
高放, 孙长建, 邵庆龙, 等. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439
GAO Fang, SUN Changjian, SHAO Qinglong, et al. Lossless compression of hyperspectral image using K-means clustering and conventional recursive least-squares predictor[J]. Journal of Electronica&Information Technology, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439
|
FOWLER J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230–2242 doi: 10.1109/TIP.2009.2025089
|
WEI Jia. Application of hybrid back propagation neural network in image compression[C]. International Conference on Intelligent Computation Technology and Automation, Nanchang, China, 2016: 209–212.
|
闫红梅, 吴冬梅. 改进BP网络在超光谱图像压缩中的应用[J]. 图学学报, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022
YAN Hongmei and WU Dongmei. Application of improved BP neural network in hyperspectral image compression[J]. Journal of Engineering Graphics, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022
|