Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Mingjiu LÜ, Wenfeng CHEN, Saiqiang XIA, Jun YANG, Xiaoyan MA. Random Chirp Frequency-stepped Signal ISAR Imaging Algorithm Based on Joint Block-sparse Model[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2614-2620. doi: 10.11999/JEIT180054
Citation: Mingjiu LÜ, Wenfeng CHEN, Saiqiang XIA, Jun YANG, Xiaoyan MA. Random Chirp Frequency-stepped Signal ISAR Imaging Algorithm Based on Joint Block-sparse Model[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2614-2620. doi: 10.11999/JEIT180054

Random Chirp Frequency-stepped Signal ISAR Imaging Algorithm Based on Joint Block-sparse Model

doi: 10.11999/JEIT180054
Funds:  The National Natural Science Foundation of China (61671469)
  • Received Date: 2018-01-16
  • Rev Recd Date: 2018-07-17
  • Available Online: 2018-08-01
  • Publish Date: 2018-11-01
  • Under the condition of lack of echo data and low SNR, the ISAR imaging performance is greatly reduced by using Random Chirp Frequency-Stepped (RCFS) signal. To solve the above problems, based on fully analyzing the echo characteristics of the random chirp frequency-stepped signal, a new method of obtaining high quality ISAR images is proposed using the joint sparse feature of the target range dimension. First, a joint block sparse imaging model of the target echo signal under the condition of random chirp frequency-stepped signal is derived and the characteristics of the model are analyzed. Secondly, a Joint Block sparse Orthogonal Matching Pursuit (JBOMP) algorithm is proposed for solving the model. The algorithm utilizes the sparse information and the joint sparse information of the ISAR echo. Therefore, the ISAR imaging performance is enhanced under the condition of low measurement and low SNR. The proposed algorithm also can achieve joint processing of multidimensional signals and has a faster operation speed. Both theoretical analysis and simulation experiments verify the effectiveness of the proposed method.
  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    HASHEMPOUR H R, MASNADI-SHIRAZI M A, and ARAND B A. Compressive Sensing ISAR imaging with LFM signal[C]. Iranian Conference on Electrical Engineering, Tehran, Iran, 2017: 1869–1873.
    ZHU Feng, ZHANG Qun, LUO Ying, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. Science China Information Science, 2012, 55(8): 1910–1924 doi: 10.1007/s11432-012-4629-0
    GAO Xunzhang, LIU Zhen, CHEN Haowen, et al. Fourier-sparsity integrated method for complex target ISAR imagery[J]. Sensors, 2015, 15(2): 2723–2736 doi: 10.3390/s150202723
    ZHAO Guanghui, SHEN Fangfang, LIN Jie, et al. Fast ISAR imaging based on enhanced sparse representation model[J]. IEEE Transactions on Antennas&Propagation, 2017, 65(10): 5453–5461 doi: 10.1109/TAP.2017.2734165
    FANG Jun , ZHANG Lizao, and LI Hongbin. Two-dimensional pattern-coupled sparse bayesian learning via generalized approximate message passing[J]. IEEE Transactions on Image Processing, 2016, 25(6): 2920–2930 doi: 10.1109/TIP.2016.2556582
    ELDAR Y C, PATRICK K, and HELMUT B. Block-sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042–3054 doi: 10.1109/TSP.2010.2044837
    吕明久, 李少东, 杨军, 等. 基于随机调频步进信号的高分辨ISAR成像方法[J]. 电子与信息学报, 2016, 38(12): 3129–3136 doi: 10.11999/JEIT160177

    LÜ Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency stepped signal[J]. Journal of Electronics&Information Technology, 2016, 38(12): 3129–3136 doi: 10.11999/JEIT160177
    JUSTIN Z and PHILIP S. Efficient high-dimensional inference in the multiple measurement vector problem[J]. IEEE Transactions on Signal Processing, 2011, 61(2): 340–354 doi: 10.1109/TSP.2012.2222382
    MOSHE M and ELDAR Y C. The Continuous joint sparsity prior for sparse representations: Theory and applications[C]. 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Thomas, USA, 2008: 125–128.
    DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Signals, Systems & Computers, Asilomar, USA, 2005: 1537–1541.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2000) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return