Advanced Search
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Jianwei LI, Changwen QU, Shujuan PENG, Yuan JIANG. Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard Examples Mining[J]. Journal of Electronics & Information Technology, 2019, 41(1): 143-149. doi: 10.11999/JEIT180050
Citation: Jianwei LI, Changwen QU, Shujuan PENG, Yuan JIANG. Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard Examples Mining[J]. Journal of Electronics & Information Technology, 2019, 41(1): 143-149. doi: 10.11999/JEIT180050

Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard Examples Mining

doi: 10.11999/JEIT180050
Funds:  The National Natural Science Foundation of China (61571454)
  • Received Date: 2018-01-15
  • Rev Recd Date: 2018-09-26
  • Available Online: 2018-10-22
  • Publish Date: 2019-01-01
  • Deep learning based ship detection method has a strict demand for the quantity and quality of the SAR image. It takes a lot of manpower and financial resources to collect the large volume of the image and make the corresponding label. In this paper, based on the existing SAR Ship Detection Dataset (SSDD), the problem of insufficient utilization of the dataset is solved. The algorithm is based on Generative Adversarial Network (GAN) and Online Hard Examples Mining (OHEM). The spatial transformation network is used to transform the feature map to generate the feature map of the ship samples with different sizes and rotation angles. This can improve the adaptability of the detector. OHEM is used to discover and make full use of the difficult sample in the process of backward propagation. The limit of positive and negative proportion of sample in the detection algorithm is removed, and the utilization ratio of the sample is improved. Experiments on the SSDD dataset prove that the above two improvements improve the performance of the detection algorithm by 1.3% and 1.0% respectively, and the combination of the two increases by 2.1%. The above two methods do not rely on the specific detection algorithm, only increase the time in training, and do not increase the amount of calculation in the test. It has very strong generality and practicability.

  • loading
  • KRIZHEVSKY A, SUTSKEVER I and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems. Nevada, USA, 2012: 1097–1105.
    GIRSHICK, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]. IEEE European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37.
    王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009

    Wang Siyu, Gao Xin, Sun Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130

    Xu Feng, Wang Haipeng, and Jin Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
    刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 473–482. doi: 10.12000/JR17059

    Liu Zeyu, Liu Bin, Guo Weiwei et al. Ship detection in GF-3 NSC mode SAR images[J]. Journal of Radars, 2017, 6(5): 473–482. doi: 10.12000/JR17059
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    HUANG Gao, LIU Zhuang, WEINBERGER K Q, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 4700–4708.
    SUNG K K and POGGIO T. Example-based learning for view-based human face detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 20(1): 39–51. doi: 10.1109/34.655648
    SHRIVASTAVA A, GUPTA A, and GIRSHICK R. Training region-based object detectors with online hard example mining[C]. IEEE Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 761–769.
    UIJLINGS J R R, SANDE K, GEVES T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5
    WANG Xiaolong, SHRIVASTAVA A, and GUPTA A. A-Fast-RCNN: Hard positive generation via adversary for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017.
    JADERBERG M, KAREN S, and ANDREW Z. Spatial transformer networks[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (2411) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return