Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Junbo WANG, Chaochao HE, Deyong CHEN, Jian CHEN, Qiuxu WEI. Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045
Citation: Junbo WANG, Chaochao HE, Deyong CHEN, Jian CHEN, Qiuxu WEI. Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2787-2794. doi: 10.11999/JEIT180045

Non-invasive Wireless and Passive MEMS Intraocular Pressure Sensor

doi: 10.11999/JEIT180045
Funds:  The National Natural Science Foundation of China (61372054), The Beijing Municipal Natural Science Foundation (4152056)
  • Received Date: 2018-01-11
  • Rev Recd Date: 2018-05-15
  • Available Online: 2018-05-30
  • Publish Date: 2018-11-01
  • Continuous monitoring of IntraOcular Pressure (IOP) plays an important role in the diagnosis and treatment of the glaucoma. Existing IOP sensors have some problems, such as low sensitivities, high central resonant frequencies and difficult fabrication. In order to solve the aforementioned problems, this paper presents a wireless, passive and non-invasive IOP sensor based on MEMS technology. The sensor contains five stacked layers, where Parylene, copper and PDMS are adopted as the functional materials within two flexible substrate layers, two electrode layers, and a dielectric layer, respectively. The electrode layers and the dielectric layer consist of two inductors and two capacitors to form a resonant circuit in C-L-C-L series. In the term of fabrication, a MEMS planar process followed by thermally shaping is proposed to fit curved surfaces of the eyeballs, and then this design scheme can effectively solve such issues as the difficulty in making the sensor and so on. Experimental results show that the central resonant frequency is decreased to 40 MHz, relative sensitivity is quantified as 1028.57 ppm/kPa, and resolution reached up to 50 Pa (0.375 mmHg). This study can be used for long-term, continuous monitoring of IOP.
  • loading
  • 汪俊, 崔巍. 我国原发性青光眼流行病学研究进展[J]. 国际眼科杂志, 2012, 12(4): 667–670 doi: 10.3969/j.issn.1672-5123.2012.04.20

    WANG Jun and CUI Wei. Progress in epidemiological studies of primary glaucoma in China[J]. International Journal of Ophthalmology, 2012, 12(4): 667–670 doi: 10.3969/j.issn.1672-5123.2012.04.20
    PUERS R, VANDEVOORDE G, and DE BRUYKER D. Electrodeposited copper inductors for intraocular pressure telemetry[J]. Journal of Micromechanics and Microengineering, 2000, 10(2): 124–129 doi: 10.1088/0960-1317/10/2/305
    ITTOOP S M, SOOHOO J R, SEIBOLD L K, et al. Systematic review of current devices for 24-h intraocular pressure monitoring[J]. Advances in Therapy, 2016, 33(10): 1679–1690 doi: 10.1007/s12325-016-0388-4
    MCMONNIES C W. The importance of and potential for continuous monitoring of intraocular pressure[J]. Clinical and Experimental Optometry, 2017, 100(3): 203–207 doi: 10.1111/cxo.12497
    KATURI K C, ASRANI S, and RAMASUBRAMANIAN M K. Intraocular pressure monitoring sensors[J]. IEEE Sensors Journal, 2008, 8(1): 12–19 doi: 10.1109/JSEN.2007.912539
    刘德盟, 吴淼, 梅年松, 等. 无线植入式连续眼内压检测微系统发展与展望[J]. 微纳电子技术, 2013, 50(1): 57–63 doi: 10.3969/j.issn.1671-4776.2013.01.011

    LIU Demeng, WU Miao, MEI Niansong, et al. Development and outlook of wireless implantable continuously intraocular pressure detection microsystems[J]. Micronanoelectronic Technology, 2013, 50(1): 57–63 doi: 10.3969/j.issn.1671-4776.2013.01.011
    COLLINS C C. Miniature passive pressure transensor for implanting in the eye[J]. IEEE Transactions on Biomedical Engineering, 1967, BME-14(2): 74–83 doi: 10.1109/TBME.1967.4502474
    CHEN P J, SAATI S, VARMA R, et al. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 721–734 doi: 10.1109/JMEMS.2010.2049825
    XUE N, CHANG S P, and LEE J B. A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor[J]. Journal of Microelectromechanical Systems, 2012, 21(6): 1338–1346 doi: 10.1109/JMEMS.2012.2206072
    BELLO S A and PASSAGLIA C L. A wireless pressure sensor for continuous monitoring of intraocular pressure in conscious animals[J]. Annals of Biomedical Engineering, 2017, 45(11): 2592–2604 doi: 10.1007/s10439-017-1896-3
    NAZAROV A, KNYAZER B, LIFSHITZ T, et al. Assessment of intraocular pressure sensing using an implanted reflective flexible membrane[J]. Journal of Biomedical Optics, 2017, 22(4): 047001 doi: 10.1117/1.JBO.22.4.047001
    ROSENGREN L, BACKLUND Y, SJOSTROM T, et al. A system for wireless intra-ocular pressure measurements using a silicon micromachined sensor[J]. Journal of Micromechanics and Microengineering, 1992, 2(3): 202–204 doi: 10.1088/0960-1317/2/3/021
    LEE J O, PARK H, DU J, et al. A microscale optical implant for continuous in vivo monitoring of intraocular pressure[J]. Microsystems&Nanoengineering, 2017, 3: 17057 doi: 10.1038/micronano.2017.57
    CHOW E Y, CHLEBOWSKI A L, and IRAZOQUI P P. A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4(6): 340–349 doi: 10.1109/TBCAS.2010.2081364
    CHEN G Z, CHAN I S, and LAM D C C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring[J]. Sensors and Actuators A:Physical, 2013, 203(63): 112–118 doi: 10.1016/j.sna.2013.08.029
    JANG C I, SHIN1 K S, KIM M J, et al. Effects of inner materials on the sensitivity and phase depth of wireless inductive pressure sensors for monitoring intraocular pressure[J]. Applied Physics Letters, 2016, 108(10): 103701 doi: 10.1063/1.4943136
    KOUHANI M H M, WEBER A, and LI W. Wireless intraocular pressure sensor using stretchable variable inductor[C]. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, 2017: 557–560.
    LIU Lijuan, WANG Junbo, CHEN Deyong, et al. Non-invasive wireless and passive mems intraocular pressure sensor based on flexible substrate[J]. Applied Mechanics and Materials, 2015, 748: 115–127 doi: 10.4028/www.scientific.net/AMM.748.115
    NOPPER R, NIEKRAWIETZ R, and REINDL L. Wireless readout of passive LC sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2450–2457 doi: 10.1109/TIM.2009.2032966
    MATEEN F, MAEDLER C, ERRAMILLI S, et al. Wireless actuation of micromechanical resonators[J]. Microsystems&Nanoengineering, 2016, 2: 16036 doi: 10.1038/micronano.2016.36
    XIANG Zhuolin, LIU Jingquan, and LEE Chengkuo. A flexible three-dimensional electrode mesh: an enabling technology for wireless brain-computer interface prostheses[J]. Microsystems&Nanoengineering, 2016, 2: 16012 doi: 10.1038/micronano.2016.12
    JELLALI R, BERTRAND V, ALEXANDRE M, et al. Photoreversibility and biocompatibility of polydimethylsiloxane-coumarin as adjustable intraocular lens material[J]. Macromolecular Bioscience, 2017, 17(7): 1600495 doi: 10.1002/mabi.201600495
    BALDWIN A and MENG E. A kirigami-based Parylene C stretch sensor[C]. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, 2017: 227–230.
    HUANG Xian, LIU Yuhao, KONG Gilwoo, et al. Epidermal radio frequency electronics for wireless power transfer[J]. Microsystems&Nanoengineering, 2016, 2: 16052 doi: 10.1038/micronano.2016.52
    MCDONALD J C, METALLO S J, and WHITESIDES G M. Fabrication of a configurable, single-use microfluidic device[J]. Analytical Chemistry, 2001, 73(23): 5645–5650 doi: 10.1021/ac010631r
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1667) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return