Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Ding CAO, Shenghua ZHOU, Hongwei LIU, Chang GAO, Zhiqiang SHAO. A Low-communication-rate Fusion Approach Based on Censored Data[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2826-2833. doi: 10.11999/JEIT180039
Citation: Ding CAO, Shenghua ZHOU, Hongwei LIU, Chang GAO, Zhiqiang SHAO. A Low-communication-rate Fusion Approach Based on Censored Data[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2826-2833. doi: 10.11999/JEIT180039

A Low-communication-rate Fusion Approach Based on Censored Data

doi: 10.11999/JEIT180039
Funds:  The National Natural Science Foundation of China (61372134, 61401329, 61501351), The National Science Fund for Distinguished Young Scholars (61525105)
  • Received Date: 2018-01-10
  • Rev Recd Date: 2018-09-20
  • Available Online: 2018-09-27
  • Publish Date: 2018-12-01
  • In multistatic radar, a Censored Data-Based Decentralized Fusion (CDDF) is proposed to address the issue of fusing local observations with communication constraints. The local likelihood ratio is calculated based on the observation of moving target immersed in clutter, where the local radar site possesses a coherent multi-channel array. Each local radar site transmits if and only if their observations’ likelihood ratios exceed the local thresholds, which determine the communication rates. By virtue of the Neyman-Pearson lemma, the global test statistic can be achieved by combining received censored data. The fusion center makes a global decision through comparing the global test statistic with a global threshold. Besides, the closed-form expression of probability of false alarm or probability of detection is also derived in this paper. Numerical simulation shows that the CDDF has better performance than " OR” rule, while approaching the performance of Centralized Fusion (CF) with the increase of the communication rate.
  • loading
  • CHERNYAK V. Fundamentals of Multisite Radar System: Multistatic Radars and Multiradar Systems[M]. New York: Gordon & Breach Science Publishers, 1998: 1–24.
    VARSHNEY P K. Distributed Detection and Data Fusion[M]. New York: Springer, 1997: 1–5.
    GOODMAN N A and BRUYERE D. Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 13–22 doi: 10.1109/TAES.2007.4285374
    HE Qian, LEHMANN N H, BLUM R S, et al. MIMO radar moving target detection in homogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1290–1301 doi: 10.1109/TAES.2010.5545189
    ZHAO Hongyan, LIU Jun, ZHANG Zijing, et al. Linear fusion for target detection in passive multistatic radar[J]. Signal Processing, 2017, 130: 175–182 doi: 10.1016/J.SIGPRO.2016.06.024
    YANG Pengfei and CHEN Biao. To listen or not: Distributed detection with asynchronous transmissions[J]. IEEE Signal Processing Letters, 2015, 22(5): 628–632 doi: 10.1109/LSP.2014.2365137
    CIUONZO D and SALVO R P. Distributed detection of a non-cooperative target via generalized locally-optimum approaches[J]. Information Fusion, 2017, 36: 261–274 doi: 10.1016/J.INFFUS.2016.12.006
    GAO Fei, GUO Lili, LI Hongbin, et al. Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2032–2042 doi: 10.1109/TWC.2014.2379279
    KASSAM S. Signal Detection in Non-Gaussian Noise[M]. New York: Springer, 1988: 97–124.
    ALTAY C and DELIC H. Optimal quantization intervals in distributed detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 38–48 doi: 10.1109/TAES.2015.140551
    RAGO C, WILLET P, and BAR-SHALOM Y. Censoring sensors: A low-communication-rate scheme for distributed detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 554–568 doi: 10.1109/7.489500
    APPADWEDULA S, VEERAVALLI V, and JONES D. Energy-efficient detection in sensor networks[J]. IEEE Journal on Selected Areas in Communication, 2005, 23(4): 693–702 doi: 10.1109/JSAC.2005.843536
    HE Hao and VARSHNEY P K. Fusing censored dependent data for distributed detection[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4385–4395 doi: 10.1109/TSP.2015.2439231
    胡勤振, 苏洪涛, 周生华, 等. 多基地雷达中双门限CFAR检测算法[J]. 电子与信息学报, 2016, 38(10): 2430–2436 doi: 10.11999/JEIT151163

    HU Qinzhen, SU Hongtao, ZHOU Shenghua, et al. Double threshold CFAR detection for multisite radar[J]. Journal of Electronics&Information Technology, 2016, 38(10): 2430–2436 doi: 10.11999/JEIT151163
    胡勤振, 杨芊, 苏洪涛, 等. 分布式MIMO雷达双门限GLRT CFAR检测[J]. 西安电子科技大学学报, 2016, 43(6): 29–33 doi: 10.3969/J.ISSN.1001-2400.2016.04.006

    HU Qinzhen, YANG Qian, SU Hongtao, et al. Double-threshold GLRT CFAR detection in distributed MIMO radar[J]. Journal of Xidian University, 2016, 43(6): 29–33 doi: 10.3969/J.ISSN.1001-2400.2016.04.006
    BHARGAVA R P and KHATRI C G. The distribution of product of independent beta random variables with application to multivariate analysis[J]. Annals of the Institute of Statistical Mathematics, 1981, 33(1): 287–296 doi: 10.1007/BF02480942
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1798) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return