Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Chunjiao FEI, Qunying ZHANG, Peilin WU, Guangyou FANG, Wanhua ZHU, Xin XU. Noise Suppression Algorithm for Ocean Magnetic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2779-2786. doi: 10.11999/JEIT180026
Citation: Chunjiao FEI, Qunying ZHANG, Peilin WU, Guangyou FANG, Wanhua ZHU, Xin XU. Noise Suppression Algorithm for Ocean Magnetic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2779-2786. doi: 10.11999/JEIT180026

Noise Suppression Algorithm for Ocean Magnetic Anomaly Detection

doi: 10.11999/JEIT180026
  • Received Date: 2018-01-09
  • Rev Recd Date: 2018-04-23
  • Available Online: 2018-05-10
  • Publish Date: 2018-11-01
  • Marine magnetic anomaly detection is one of the basic means of marine scientific observation, exploration of undersea resources, national defense and security. However, the complexity of the magnetic field noise increases the difficulty of the magnetic detection. It is of great significance to study various magnetic field noise mechanisms and suppression methods for the improvement of measurement accuracy. In this paper, the wave magnetic field model under general and infinite depth conditions is used to estimate the noise induced by sea waves respectively. The wave and geomagnetic noise in the magnetic anomaly signal is filtered out by the combination of spectral subtraction and wavelet. In order to verify the validity of the algorithm, the ocean magnetic field in a sea area of South China Sea in August 2015 is observed. The results show that this method can filter out most of the wave and geomagnetic field noise. The wave distribution in the frequency range of 0.4~0.8 Hz is obviously reduced, the waveform in the time domain is greatly improved, the magnetic anomaly signal of the target is highlighted. Signal to noise ratio can be increased by nearly 11 dB. The proposed method has the advantages of low computational complexity, strong real-time performance and easy implementation, which can provide an effective measure for noise suppression of marine magnetic anomaly detection.
  • loading
  • 任来平, 张启国, 马刚. 水下铁磁体的海面磁场计算模型研究[J]. 海洋测绘, 2004, 24(6): 16–19 doi: 10.3969/j.issn.1671-3044.2004.06.005

    REN Laiping, ZHANG Qiguo, and MA Gang. Research for calculating model of underwater ferromagnet magnetic field on sea surface[J]. Hydrographic Surveying and Charting, 2004, 24(6): 16–19 doi: 10.3969/j.issn.1671-3044.2004.06.005
    NAIN H, ISA M C, MUHAMMAD M M, et al. Management of naval vessel’s electromagnetic signatures: A review of sources and countermeasures[J]. Defence S&T Technical Bulletin, 2013, 6(2): 93–110.
    TORRANCE B. Low signature impressed current cathodic protection-new development-future concepts[J]. Journal of Computing Science and Engineering, 2006, 9(17): 511–526.
    WATERMANN J and LAM J. Distributions of magnetic field variations, differences and residuals[R]. DTIC Document, 1999.
    SHEINKER A, GINZBURG B, SALOMONSKI N, et al. Magnetic anomaly detection using high-order crossing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1095–1103 doi: 10.1109/TGRS.2011.2164086
    FRUMKIS L, GINZBURG B, SALOMONSKI N, et al. Optimization of scalar magnetic gradiometer signal processing[J]. Sensors and Actuators A:Physical, 2005, 121(1): 88–94 doi: 10.1016/j.sna.2005.01.019
    SHEINKER A, FRUMKIS L, GINZBURG B, et al. Magnetic anomaly detection using a three-axis magnetometer[J]. IEEE Transactions on Magnetics, 2009, 45(1): 160–167 doi: 10.1109/TMAG.2008.2006635
    SHEINKER A, GINZBURG B, SALOMONSKI N, et al. Localization in 2D using beacons of low frequency magnetic field[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 1020–1030 doi: 10.1109/JSTARS.2012.2213240
    OTNES R. Static magnetic dipole detection using vector linear prediction, Anderson functions, and block-based adaptive processing[C]. Europe Oceans Conference, Aberdeen, Scotland, 2007: 1–6.
    LUCAS C and OTNES R. Noise removal using multi-channel coherence[R]. DTIC Document, 2010.
    刘敦歌. 目标磁异常/轴频信号处理方法研究[D]. [博士论文], 中国科学院大学, 2016: 9–12.

    LIU Dunge. Research on processing of targets’ magnetic anomaly/shaft frequency signatures[D]. [Ph.D. dissertation], The University of Chinese Academy of Sciences, 2016: 9–12.
    FAGGIONI O, SOLDANI M, GABELLONE A, et al. Undersea harbour defence: A new choice in magnetic networks[J].Journal of Applied Geophysics, 2010, 72(1): 46–56 doi: 10.1016/j.jappgeo.2010.07.001
    WAHLSTRÖM N. Localization using magnetometers and light sensors[D]. [Master dissertation], Linköping University, 2013: 23–25.
    费春娇, 吴佩霖, 张群英, 等. 一种改进型的基于Stokes一阶波的海浪磁场模型[J]. 电子与信息学报, 2017, 39(8): 2007–2013 doi: 10.11999/JEIT161123

    FEI Chunjiao, WU Peiling, ZHANG Qunying, et al. Improved model of ocean wave induced magnetic field based on the first order Stokes Equtions[J]. Journal of Electronics&Information Technology, 2017, 39(8): 2007–2013 doi: 10.11999/JEIT161123
    BR Webworks, Status[OL]. http://passageweather.com/, 2006-2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1913) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return