Citation: | Kangyong YOU, Lishan YANG, Yueliang LIU, Wenbin GUO, Wenbo WANG. Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2150-2157. doi: 10.11999/JEIT171238 |
GOLDONI E, SAVIOLI A, and RISI M. Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4[C]. Wireless Conference, Lucca, Italy, 2010: 71–77.
|
CAM L N, ORESTIS G, YUKI Y, et al. The wireless localization matching problem[J]. IEEE Internet of Things Journal, 2017, 4(5): 1312–1326 doi: 10.1109/JIOT.2017.2723013
|
LIN Xiaofei, YOU Kangyong, and GUO Wenbin. Delaunay triangulation and mesh grid combining algorithm for multiple targets localization using compressive sensing[C]. International Symposium on Wireless Personal Multimedia Communications, Shenzhen, China, 2017: 25–30.
|
CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30 doi: 10.1109/MSP.2007.914731
|
CEVHER V, DUARTE M F, and BARANIUK R G. Distributed target localization via spatial sparsity[C]. Signal Processing Conference, Lausanne, Switzerland, 2008: 1–5.
|
FENG Chen, VALAEE S, and TAN Zhenhui. Multiple target localization using compressive sensing[C]. IEEE Global Telecommunications Conference, Honolulu, USA, 2009: 1–6.
|
ZHANG Bowu, CHENG Xiuzhen, ZHANG Nan, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]. IEEE INFOCOM, Shanghai, China, 2011: 2255–2263.
|
LAGUNAS E, SHARMA S K, CHATZINOTAS S, et al. Compressive sensing based target counting and localization exploiting joint sparsity[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3231–3235.
|
CHI Y, SCHARF LL, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195 doi: 10.1109/TSP.2011.2112650
|
SUN Baoming, GUO Yan, LI Ning, et al. Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks[J]. IEEE Transactions on Communications, 2017, 65(7): 2985–2998 doi: 10.1109/TCOMM.2017.2695198
|
TIPPING M E. Sparse Bayesian learning and relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244 doi: 10.1162/15324430152748236
|
JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356 doi: 10.1109/TSP.2007.914345
|
TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressive sensing off the grid[C]. Communication, Control, and Computing. Monticello, USA, 2013: 778–785.
|
陈栩杉, 张雄伟, 杨吉斌, 等. 如何解决基不匹配问题: 从原子范数到无网格压缩感知[J]. 自动化学报, 2016, 42(3): 335–346 doi: 10.16383/j.aas.2016.c150539
CHENG Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: From atomicnorm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335–346 doi: 10.16383/j.aas.2016.c150539
|
CANDES E J and FERNANDEZ G C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956 doi: 10.1002/cpa.21455
|
YANG Zai and XIE Lihua. Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 995–1006 doi: 10.1109/TSP.2015.2493987
|