Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Kangyong YOU, Lishan YANG, Yueliang LIU, Wenbin GUO, Wenbo WANG. Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2150-2157. doi: 10.11999/JEIT171238
Citation: Kangyong YOU, Lishan YANG, Yueliang LIU, Wenbin GUO, Wenbo WANG. Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2150-2157. doi: 10.11999/JEIT171238

Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning

doi: 10.11999/JEIT171238
Funds:  The National Natural Science Foundation of China (61271181, 61571054), The Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation
  • Received Date: 2017-12-28
  • Rev Recd Date: 2018-05-23
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • Multiple sources localization is an issue of theoretical importance and practical significance in signal processing. The basis mismatch problem caused by target deviation from the initial grid point is addressed. Based on sparse Bayesian learning framework with Laplace prior, a novel iterative Adaptive Grid Multiple Targets Localization (AGMTL) algorithm is proposed to tackle the practical situation in which the targets deviates from the initial grid point. In essence, AGMTL algorithm implements sparse signal reconstruction and adaptive grid localization dictionary learning jointly. The simulation results show that AGMTL algorithm outperforms the traditional Compressive Sensing (CS) based localization algorithm in the terms of localization error, estimation reliability and noise robustness.
  • loading
  • GOLDONI E, SAVIOLI A, and RISI M. Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4[C]. Wireless Conference, Lucca, Italy, 2010: 71–77.
    CAM L N, ORESTIS G, YUKI Y, et al. The wireless localization matching problem[J]. IEEE Internet of Things Journal, 2017, 4(5): 1312–1326 doi: 10.1109/JIOT.2017.2723013
    LIN Xiaofei, YOU Kangyong, and GUO Wenbin. Delaunay triangulation and mesh grid combining algorithm for multiple targets localization using compressive sensing[C]. International Symposium on Wireless Personal Multimedia Communications, Shenzhen, China, 2017: 25–30.
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30 doi: 10.1109/MSP.2007.914731
    CEVHER V, DUARTE M F, and BARANIUK R G. Distributed target localization via spatial sparsity[C]. Signal Processing Conference, Lausanne, Switzerland, 2008: 1–5.
    FENG Chen, VALAEE S, and TAN Zhenhui. Multiple target localization using compressive sensing[C]. IEEE Global Telecommunications Conference, Honolulu, USA, 2009: 1–6.
    ZHANG Bowu, CHENG Xiuzhen, ZHANG Nan, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]. IEEE INFOCOM, Shanghai, China, 2011: 2255–2263.
    LAGUNAS E, SHARMA S K, CHATZINOTAS S, et al. Compressive sensing based target counting and localization exploiting joint sparsity[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3231–3235.
    CHI Y, SCHARF LL, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195 doi: 10.1109/TSP.2011.2112650
    SUN Baoming, GUO Yan, LI Ning, et al. Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks[J]. IEEE Transactions on Communications, 2017, 65(7): 2985–2998 doi: 10.1109/TCOMM.2017.2695198
    TIPPING M E. Sparse Bayesian learning and relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244 doi: 10.1162/15324430152748236
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356 doi: 10.1109/TSP.2007.914345
    TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressive sensing off the grid[C]. Communication, Control, and Computing. Monticello, USA, 2013: 778–785.
    陈栩杉, 张雄伟, 杨吉斌, 等. 如何解决基不匹配问题: 从原子范数到无网格压缩感知[J]. 自动化学报, 2016, 42(3): 335–346 doi: 10.16383/j.aas.2016.c150539

    CHENG Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: From atomicnorm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335–346 doi: 10.16383/j.aas.2016.c150539
    CANDES E J and FERNANDEZ G C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956 doi: 10.1002/cpa.21455
    YANG Zai and XIE Lihua. Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 995–1006 doi: 10.1109/TSP.2015.2493987
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (2274) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return