Advanced Search
Volume 40 Issue 10
Sep.  2018
Turn off MathJax
Article Contents
Bin SHEN, Zhiqiang WANG, Han QING. Secondary User Power Control Aided Cooperative Spectrum Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2337-2344. doi: 10.11999/JEIT171232
Citation: Bin SHEN, Zhiqiang WANG, Han QING. Secondary User Power Control Aided Cooperative Spectrum Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2337-2344. doi: 10.11999/JEIT171232

Secondary User Power Control Aided Cooperative Spectrum Sensing

doi: 10.11999/JEIT171232
Funds:  The Municipal Natural Science Foundation of Chongqing (cstc2016jcyjA0595)
  • Received Date: 2017-12-18
  • Rev Recd Date: 2018-05-23
  • Available Online: 2018-07-30
  • Publish Date: 2018-10-01
  • In conventional cooperative spectrum sensing, the signal model is usually simplified as a single-stage channel environment where the Secondary Users (SUs) collect their spectrum data and report to the Fusion Center (FC) with the same transmit power. This hampers the FC from efficiently exploiting the space diversity gain beneath the data of different users. In order to solve this problem and control the user transmit power in reporting their data, three Optimal Power Control (OPC) schemes are proposed. When the Channel Statistic (CS) of the sensing channel and the reporting channel are perfectly known at the FC, a CS Aided Optimal Power Control (CSA-OPC) scheme is derived in closed-form, whereas when the CS is practically unavailable, Principal EigenVector aided OPC (PEV-OPC) and Blindly Weighted Multiple-EigenVector aided OPC (BWMEV-OPC) schemes are developed. Theoretical analysis and computer simulation verify that the propose OPC schemes greatly ameliorate the spectrum sensing performance, compared to the non-OPC aided cooperative spectrum sensing schemes.
  • loading
  • AXELL E, LEUS G, and LARSSON E G. Overview of spectrum sensing for cognitive radio[C]. IEEE International Workshop on Cognitive Information Processing, Elba, 2010: 322–327.
    CICHOŃ K, KLIKS A, and BOGUCKA H. Energy-efficient cooperative spectrum sensing: A survey[J]. IEEE Communications Surveys&Tutorials, 2016, 18(3): 1861–1886 doi: 10.1109/COMST.2016.2553178
    MA Jun and LI Ye. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks[C]. Global Communications Conference, 2007. GLOBECOM '07, Washington, DC, USA, 2007: 3139–3143.
    ZHOU Fuhui, LI Zan, SI Jingbo, et al. Adaptive secondary-user selection without prior information for cooperative spectrum sensing in CRNs[C]. IEEE International Conference on Computer, Information and Telecommunication Systems, Gijon, 2015: 1–5.
    ABDI N, YAZDIAN E, and HOSEINI A M D. Optimum number of secondary users in cooperative spectrum sensing methods based on random matrix theory[C]. International Conference on Computer and Knowledge Engineering, Mashhad 2015: 290–294.
    申滨, 喻俊, 黄琼, 等. 基于EEF准则的认知无线电宽带频谱感知[J]. 北京邮电大学学报, 2014, 37(6): 115–119 doi: 10.13190/j.jbupt.2014.06.024

    SHEN Bin, YU Jun, HUANG Qiong, et al. EEF criterion based wideband spectrum sensing used in cognitive radio[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(6): 115–119 doi: 10.13190/j.jbupt.2014.06.024
    ZENG Yonghong and LIANG Yingchang. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784–1793 doi: 10.1109/TCOMM.2009.06.070402
    弥寅, 卢光跃. 基于特征值极限分布的合作频谱感知算法[J]. 通信学报, 2015, 36(1): 84–89 doi: 10.11959/j.issn.1000-436x.2015010

    MI Yin and LU Guangyue. Cooperative spectrum sensing algorithm based on limiting eigenvalue distribution[J]. Journal on Communications, 2015, 36(1): 84–89 doi: 10.11959/j.issn.1000-436x.2015010
    ZHANG Rui, LIM T J, LIANG Yingchang, et al. Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach[J]. IEEE Transactions on Communications, 2010, 58(1): 84–88 doi: 10.1109/TCOMM.2010.01.080158
    ZENG Yonghong, LIANG Yingchang, and ZHANG Rui. Blindly combined energy detection for spectrum sensing in cognitive radio[J]. IEEE Signal Processing Letters, 2008, 15(1): 649–652 doi: 10.1109/LSP.2008.2002711
    曹开田, 杨震. 一种新型的基于最大特征值的合作频谱感知算法[J]. 电子与信息学报, 2011, 33(6): 1367–1372 doi: 10.3724/SP.J.1146.2010.01091

    CAO Kaitian and YANG Zhen. A novel cooperative spectrum sensing algorithm based on the maximum eigenvalue[J]. Journal of Electronics&Information Technology, 2011, 33(6): 1367–1372 doi: 10.3724/SP.J.1146.2010.01091
    MA Jun, ZHAO Guodong, and LI Ye. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4502–4507 doi: 10.1109/T-WC.2008.070941
    SEDIGHI S, TAHERPOUR A, GAZOR S, et al. Eigenvalue-based multiple antenna spectrum sensing: higher order moments[J].IEEE Transactions on Wireless Communications, 2017, 16(2): 1168–1184 doi: 10.1109/TWC.2016.2640299
    ZHOU Fushui, BEAULIEU N C, LI Zan, et al. Feasibility of maximum eigenvalue cooperative spectrum sensing based on Cholesky factorisation[J]. Communications IET, 2016, 10(2): 199–206 doi: 10.1049/iet-com.2015.0252
    ZHANG Wensheng, SUN Jian, XIONG Hailiang, et al. A new joint eigenvalue distribution of finite random matrix for cognitive radio networks[J]. IET Communications, 2016, 10(13): 1584–1589 doi: 10.1049/iet-com.2015.0869
    LI Zan, ZHOU Fushui, SI Jingbo, et al. Feasibly efficient cooperative spectrum sensing scheme based on Cholesky decomposition of the correlation matrix[J]. IET Communications, 2016, 10(9): 1003–1011 doi: 10.1049/iet-com.2015.0654
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (2004) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return