Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Zhaotao QIN, Jun WANG, Shaoming WEI, Yanxian BI, Zixiang WEI. Passive Localization Using TDOA Measurements from Multiple Sensors Based on Priori Knowledge of Target Altitude[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2219-2226. doi: 10.11999/JEIT171231
Citation: Zhaotao QIN, Jun WANG, Shaoming WEI, Yanxian BI, Zixiang WEI. Passive Localization Using TDOA Measurements from Multiple Sensors Based on Priori Knowledge of Target Altitude[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2219-2226. doi: 10.11999/JEIT171231

Passive Localization Using TDOA Measurements from Multiple Sensors Based on Priori Knowledge of Target Altitude

doi: 10.11999/JEIT171231
Funds:  The National Natural Science Foundation of China (61501011, 61501012, 61671035)
  • Received Date: 2017-12-26
  • Rev Recd Date: 2018-05-15
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • To solve the problem of radiant target localization using Time Difference Of Arrival (TDOA) measurements from multiple sensors, an algebraic closed-form method based on Weighted Least Squares (WLS) minimizations is proposed, with the priori knowledge of target altitude. In near distance scenario, neglecting the effect of earth curvature, the target altitude can be regarded as one-dimensional coordinate of the target. Based on this condition, the target position is solved by a new two-step WLS algorithm. It does not require initial solution guess, and is computationally attractive due to the non-iterative operation. Simulation results show that the target localization accuracy is greatly improved using target altitude, and the proposed method can reach Cramer-Rao Lower Bound (CRLB) accuracy under small Gaussian measurement noise.
  • loading
  • ALI N and MOHAMMAD A S. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671 doi: 10.1109/TAES.2017.2669558
    LIU Y, YANG L, and HO K C. Moving target localization in multistatic sonar using time delays, Doppler shifts and arrival angles[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3399–3403.
    VADIM I, PINI G, EHUD R, et al. Real-time vision-aided localization and navigation based on three-view geometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2239–2259 doi: 10.1109/TAES.2012.6237590
    NGUYEN T L T, SEPTIER F, RAJAONA H, et al. A Bayesian perspective on multiple source localization in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1684–1699 doi: 10.1109/TSP.2015.2505689
    DIGIAMPAOLO E and MARTINELLI F. A passive UHF-RFID system for the localization of an indoor autonomous vehicle[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3961–3970 doi: 10.1109/TIE.2011.2173091
    CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915 doi: 10.1109/78.301830
    ROUHOLLAH A and FEREIDOON B. An efficient weighted least squares estimator for elliptic localization in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(6): 902–906 doi: 10.1109/LSP.2017.2697500
    ROUHOLLAH A, FEREIDOON B, and HOJATOLLAH Z. Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(3): 299–303 doi: 10.1109/LSP.2017.2660545
    RUI Liyang and HO K C. Elliptic localization: performance study and optimum receiver placement[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4673–4688 doi: 10.1109/TSP.2014.2338835
    LIU Y, YANG L, and HO K C. Moving target localization in multistatic sonar by differential delays and Doppler shifts[J]. IEEE Signal Processing Letters, 2016, 23(9): 1160–1164 doi: 10.1109/LSP.2016.2582043
    ANTHONY J W. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516 doi: 10.1109/LSP.2004.826501
    冯奇, 曲长文, 周强. 多运动站异步观测条件下的直接定位算法[J]. 电子与信息学报, 2017, 39(2): 417–422 doi: 10.11999/JEIT160314

    FENG Qi, QU Changwen, and ZHOU Qiang. Direct position determination using asynchronous observations of multiple moving sensors[J]. Journal of Electronics&Information Technology, 2017, 39(2): 417–422 doi: 10.11999/JEIT160314
    MOTTI G and ANTHONY J W. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 817–828 doi: 10.1109/7.256302
    周龙健, 罗景青, 孔辉. 基于虚拟时差的运动阵列空间无源定位算法[J]. 电子与信息学报, 2017, 39(7): 1759–1763 doi: 10.11999/JEIT160860

    ZHOU Longjian, LUO Jingqing, and KONG Hui. A passive location algorithm based on the virtual TDOAs of moving array[J]. Journal of Electronics&Information Technology, 2017, 39(7): 1759–1763 doi: 10.11999/JEIT160860
    HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463 doi: 10.1109/TSP.2004.831921
    房嘉奇, 冯大政, 李进. 稳健收敛的时差频差定位技术[J]. 电子与信息学报, 2015, 37(4): 798–803 doi: 10.11999/JEIT140560

    FANG Jiaqi, FENG Dazheng, and LI Jin. A robustly convergent algorithm for source localization using time difference of arrival and frequency difference of arrival[J]. Journal of Electronics&Information Technology, 2015, 37(4): 798–803 doi: 10.11999/JEIT140560
    SO H C and LIN Lanxin. Linear least squares approach for accurate received signal strength based source localization[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 4035–4040 doi: 10.1109/TSP.2011.2152400
    SEYMOUR S. Differential delay/Doppler ML estimation with unknown signals[J]. IEEE Transactions on Signal Processing, 1993, 41(8): 2717–2719 doi: 10.1109/78.229901
    FOY W H. Position-location solution by Taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(2): 187–194 doi: 10.1109/TAES.1976.308294
    TORRIERI D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(2): 183–198 doi: 10.1109/TAES.1984.310439
    SCHAU H C and ROBINSON A Z. Passive source localization employing intersecting spherical surfaces from time-of-arrival differences[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(8): 1223–1225 doi: 10.1109/TASSP.1987.1165266
    HO K C and CHAN Y T. Geolocation of a known altitude object from TDOA and FDOA measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 770–782 doi: 10.1109/7.599239
    杨林, 周一宇, 徐晖, 等. 利用三站TDOA及辅助高度信息的空间目标二维定位方法及误差分析[J]. 电子学报, 1998, 26(12): 71–74 doi: 10.3321/j.issn:0372-2112.1998.12.016

    YANG Lin, ZHOU Yiyu, XU Hui, et al. Passive location and error analysis using TDOA and aided height information by three stations[J]. Acta Electronica Sinica, 1998, 26(12): 71–74 doi: 10.3321/j.issn:0372-2112.1998.12.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2547) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return