Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Bo LI, Chao XU, Xiaohui LI, Huijun ZHANG, Wenli WANG. BeiDou Navigation Satellite System in Challenge Environment Using an Atomic Clock and Barometric Altimeter[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2212-2218. doi: 10.11999/JEIT171181
Citation: Bo LI, Chao XU, Xiaohui LI, Huijun ZHANG, Wenli WANG. BeiDou Navigation Satellite System in Challenge Environment Using an Atomic Clock and Barometric Altimeter[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2212-2218. doi: 10.11999/JEIT171181

BeiDou Navigation Satellite System in Challenge Environment Using an Atomic Clock and Barometric Altimeter

doi: 10.11999/JEIT171181
Funds:  Defense Science and Technology Innovation Fund (CXJJ-17-M110)
  • Received Date: 2017-12-18
  • Rev Recd Date: 2018-05-18
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • The vertical positioning accuracy of BeiDou satellite navigation System (BDS) and the continuity of receiver in the challenge environment can not satisfy the user demand. If atomic clocks are used in the receiver, the high stability of the atomic clock can be used for long time and high precision prediction of receiver clock bias. The positioning accuracy and continuity are improved by using atomic clock and barometric altimeter. This article first analyzes the atomic clocks and barometric altimeter aided BDS positioning algorithm; Then, correction method is proposed for initialization of barometric altimeter, and analysis on the difference of noise type clock is used to determine the clock bias prediction method; Finally, positioning experiment of the atomic clock and barometric altimeter aided BDS in simulation challenge environment is carried out, and the positioning result is analyzed. The results show that BDS can positioning solution to track two visible satellites, and vertical positioning accuracy is significantly improved. The positioning error in the vertical direction is decreased from 8.2 m (RMSE) to 5.2 m, and the fluctuation of the positioning results decreased from 4.6 m to 0.8 m.
  • loading
  • ZHANG Jieying, EZZALDEEN E, ZHOU Junchuan, et al. Performance investigation of barometer aided GPS/MEMS-IMU integration[C]. Position Location and Navigation Symposium (PLANS), Myrtle Beach, 2012: 598–604.
    KUBO N, TOKURA H, and PULLEN S. Mixed GPS-BeiDou RTK with inter-systems bias estimation aided by CSAC[J]. GPS Solutions, 2018, 22(1): 5 doi: 10.1007/s10291-017-0670-1
    CALERO D and FERNANDEZ E. Characterization of chip-scale atomic clock for GNSS navigation solutions[C]. International Association of Institutes Navigation World Congress(IAIN), Prague, 2015: 1–8.
    RAMLALL R, STREETER J, and SCHBECKER J F. Three satellite navigation in an urban canyon using a chip-scale atomic clock[C]. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, 2011: 2937–2945.
    ZHOU Weili, HUANG Chao, SONG Shuli, et al. Characteristic analysis and short-term prediction of GPS/BDS satellite clock correction[C]. China Satellite Navigation Conference (CSNC) 2016 Proceedings, Changsha, 2016, 3: 187–200.
    MISRA P N. Clock-aided satellite navigation receiver system for enhanced position estimation and integrity monitoring[P]. USA Patent, 1997, US5623414A.
    LIU Chang, XU Feng, QU Yongsheng, et al. Analysis on factors influencing frequency drift of rubidium clocks for satellite navigation[C]. China Satellite Navigation Conference (CSNC) 2016 Proceedings, Changsha, 2016, 3: 645–652.
    KRAWINKEL T and SCHON S. Benefits of receiver clock modeling in code-based GNSS navigation[J]. GPS Solutions, 2015, 20(4): 1–15 doi: 10.1007/s10291-015-0480-2
    孙健. GPS和高精度气压高度表的组合导航定位技术研究[D]. [硕士论文], 南京航空航天大学, 2008.

    SUN Jian. Research on GPS and high precision baro-altimeter integrated navigation and positioning technology[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2008.
    李博, 李孝辉. 气压测高仪的设计与实现[J]. 国外电子测量技术, 2017, 36(1): 53–56 doi: 10.3969/j.issn.1002-8978.2017.01.014

    LI Bo and LI Xiaohui. Design and implementation of barometric altimeter[J]. Foreign Electronic Measurement Technology, 2017, 36(1): 53–56 doi: 10.3969/j.issn.1002-8978.2017.01.014
    KAPLAN E D and HEGARTY C. Understanding GPS: Principles and Applications[M]. London: Artech House, 2005: 336.
    KLINE P A. Atomic clock augmentation for receivers using the Global Positioning System[D]. [Ph.D. dissertation], Virginia Polytechnic Institute and State University, 1997: 55–57.
    ALLAN D W. Should the classical variance be used as a basic measure in standards metrology?[J]. IEEE Transactions on Instrumentation and Measurement, 1987, IM-36(2): 646–654 doi: 10.1109/TIM.1987.6312761
    李孝辉. 时间频率信号的精密测量[M]. 北京: 科学出版社, 2010: 34.

    LI Xiaohui. Precise Measurement of Time and Frequency Signals[M]. Beijing: Science Press, 2010: 34.
    RILEY W J. Handbook of frequency stability analysis[J]. NIST, 2007, 1065: 1–123.
    ALLAN D W. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1987, 34(6): 647–654 doi: 10.1109/T-UFFC.1987.26997
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (1381) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return