Citation: | Gang ZHANG, Hexiang CHEN, Tianqi ZHANG. A Multiuser Noise Reduction Differential Chaos Shift Keying System[J]. Journal of Electronics & Information Technology, 2019, 41(2): 362-368. doi: 10.11999/JEIT171173 |
One of the major drawbacks of the conventional Multiuser Differential Chaos Shift Keying is the poor Bit Error Rate (BER), a MultiUser Noise Reduction Differential Chaos Shift Keying (MU-NRDCSK) system is proposed. At the transmitter, M/P chaotic samples are transmitted and then duplicated P times as a reference signal, all users share the same reference signal, and information signals are delayed by different times to distinguish different users. At the receiver, the received signal is averaged by a moving average filter, and then the resultant filtered signal is correlated to different time-delated replica. The scheme can enhance the performance of BER by reducing the variance of noise terms in the system. The theoretical BER formula of this new scheme is derived in Additive White Gaussian Noise (AWGN) channel and Rayleigh channel. Theoretical analysis and the simulation results show that the theoretical formula and the simulation result are in good agreement. The MU-NRDCSK scheme can enhance the performance of BER better and has good development prospects and research value in the chaotic communication field.
陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039
CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039
|
张刚, 孟维, 张天骐. 多用户分段移位差分混沌键控通信方案[J]. 电子与信息学报, 2017, 39(5): 1219–1225. doi: 10.11999/JEIT160795
ZHANG Gang, MENG Wei, and ZHANG Tianqi. Multiuser communication scheme based on segment shift differential chaos shift keying[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1219–1225. doi: 10.11999/JEIT160795
|
XU Weikai, WANG Lin, and CHEN Guanrong. Performance of DCSK cooperative communication systems over multipath fading channels[J]. IEEE Transactions on Circuits & System I Regular Papers, 2011, 58(1): 196–204. doi: 10.1109/TCSI.2010.2071730
|
DAS S, MANDAL S K, and CHAKRABORTY M. LMMSE equalized DCSK communication system over a multipath fading channel with AWGN noise[C]. Third International Conference on Computer, Communication, Control and Information Technology, Hooghly, India, 2015: 1–4.
|
VALI R, BERBER S M, and NGUANG S K. Analysis of chaos-based code tracking using chaotic correlation statistics[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(4): 796–805. doi: 10.1109/TCSI.2011.2169885
|
FU Yongqing and LI Xingyuan. A novel chaos oscillation and its application in wireless communication[C]. International Conference on Smart and Sustainable City and Big Data, the Institution of Engineering and Technology, Shanghai, China, 2015: 83–90.
|
DING Qun and WANG Jianan. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901–905. doi: 10.1049/iet-com.2010.0643
|
ESCRIBANO F J, KADDOUM G, WAGEMAKERS A, et al. Design of a new differential chaos-shift-keying system for continuous mobility[J]. IEEE Transactions on Communications, 2016, 64(5): 2066–2078. doi: 10.1109/TCOMM.2016.2538236
|
MARTIN H and THOMAS S. Chaos communication over noisy channels[J]. International Journal of Bifurcation and Chaos, 2000, 10(4): 719–735. doi: 10.1142/S0218127400000505
|
FRANCIS C M L and CHI K T. On optimal detection of noncoherent chaos-shift-keying signals in a noisy environment[J]. International Journal of Bifurcation & Chaos, 2003, 13(6): 1587–1597.
|
YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
|
ALBASSAM N N. A new hybrid DCSK-CDSK scheme for Chaos based communications[C]. International Conference on Information and Communication Systems, IEEE, Irbid, Jordan, 2014: 1–5.
|
YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits System II Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859
|
GALIAS Z and MAGGIOM G M. Quadrature chaos–shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858
|
KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831
|
LAU F C M, YIP M M, TSE C K, et al. A multiple access technique for differential chaos shift keying[J]. International Journal of Innovative Technology & Exploring Engineering, 2013, 49(1): 96–104. doi: 10.1109/81.974883
|
XU Weikai, WANG Lin, and KOLUMBAN G. A novel differential chaos shift keying modulation scheme[J]. International Journal of Bifurcation & Chaos, 2011, 21(3): 799–814. doi: 10.1142/S0218127411028829
|
TALEB F, BENDIMERAD F T, and ROVIRASR D. Very high efficiency differential chaos shift keying system[J]. IET Communications, 2016, 10(17): 2300–2307. doi: 10.1049/iet-com.2016.0411
|
BAI Chao, REN Haipeng, GREBOGI C, et al. Chaos-based underwater communication with arbitrary transducers and bandwidth[J]. Applied Sciences, 2018, 8(2): 162. doi: 10.3390/app8020162
|
KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041
|
KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
|