Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Weihong FU, Cong ZHANG. Independent Vector Analysis Convolutive Blind Separation Algorithm Based on Step-size Adaptive[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2158-2164. doi: 10.11999/JEIT171156
Citation: Weihong FU, Cong ZHANG. Independent Vector Analysis Convolutive Blind Separation Algorithm Based on Step-size Adaptive[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2158-2164. doi: 10.11999/JEIT171156

Independent Vector Analysis Convolutive Blind Separation Algorithm Based on Step-size Adaptive

doi: 10.11999/JEIT171156
Funds:  The National Natural Science Foundation of China (61201134)
  • Received Date: 2017-12-06
  • Rev Recd Date: 2018-04-23
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • Independent Vector Analysis (IVA) is one of the best methods to solve the sort ambiguity of convolutive blind separation in frequency domain. However, it needs more iterations and computing time, and the separation effect is susceptible to the initial value of the separation matrix. This paper proposes an IVA convolutive blind separation algorithm based on step-size adaptive, which uses Joint Approximative Diagonalization of Eigenmatrices (JADE) algorithm to initialize the separation matrix and optimizes adaptively the step step-size parameters. JADE initialization can make the separation matrix have an appropriate initial value, thus avoiding the situation of local convergence; step-size adaptive optimization can significantly improve the convergence speed of the algorithm. Simulation results show that this algorithm improves the separation performance and shortens the operation time significantly.
  • loading
  • BELAID S, HATTAY J, NAANAA W, et al. A new multi-scale framework for convolutive blind source separation[J]. Signal Image&Video Processing, 2016, 10(7): 1–8 doi: 10.1007/s11760-016-0877-6
    ZOULIKHA M and DJENDI M. A new regularized forward blind source separation algorithm for automatic speech quality enhancement[J]. Applied Acoustics, 2016, 112: 192–200 doi: 10.1016/j.apacoust.2016.05.012
    NEGRO F, MUCELI S, CASTRONOVO A M, et al. Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation[J]. Journal of Neural Engineering, 2016, 13(2): 026027 doi: 10.1088/1741-2560/13/2/026027
    HAILE M A and DYKAS B. Blind source separation for vibration-based diagnostics of rotorcraft bearings[J]. Journal of Vibration&Control, 2016, 22(18): 3807–3820 doi: 10.1177/1077546314566041
    CHERRAK O, GHENNIOUI H, THIRION-MOREAU N, et al. Preconditioned optimization algorithms solving the problem of the non unitary joint block diagonalization: Application to blind separation of convolutive mixtures[J]. Multidimensional Systems&Signal Processing, 2017(1): 1–24 doi: 10.1007/s11045-017-0506-8
    贾志成, 韩大伟, 陈雷, 等. 基于复Givens矩阵与蝙蝠优化的卷积盲分离算法[J]. 通信学报, 2016, 37(7): 107–117 doi: 10.11959/j.issn.1000-436x.2016138

    JIA Zhicheng, HAN Dawei, CHEN Lei, et al. Convolutive blind separation algorithm based on complex Givens matrix and bat optimization[J]. Journal of Communications, 2016, 37(7): 107–117 doi: 10.11959/j.issn.1000-436x.2016138
    BINGHAM E and HYVARINEN A. A fast fixed-point algorithm for independent component analysis of complex valued signals[J]. International Journal of Neural Systems, 2000, 10(1): 1–8 doi: 10.1142/S0129065700000028
    CARDOSO J F. Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017–3029 doi: 10.1109/78.553476
    CARDOSO J F. High order contrast for independent component analysis[J]. Neural Computation, 1999, 11(1): 157–193 doi: 10.1162/089976699300016863
    KIM T, ATTIAS H T, LEE S Y, et al. Blind source separation exploiting higher-order frequency dependencies[J]. IEEE Transactions on Audio Speech&Language Processing, 2006, 15(1): 70–79.
    杨福生, 洪波. 独立分量分析的原理与应用[M]. 北京: 清华大学出版社, 2006: 20–23.

    YANG Fusheng and HONG Bo. The Principle and Application of Independent Component Analysis[M]. Beijing: Tsinghua University Press, 2006: 20–23.
    孙守宇, 郑君里, 吴德伟. 基于自然梯度算法的盲信源分离研究[J]. 空军工程大学学报(自然科学版), 2003, 4(3): 50–54 doi: 10.3969/j.issn.1009-3516.2003.03.013

    SUN Shouyu, ZHENG Junli, and WU Dewei. Research on blind source separation based on natural gradient algorithm[J]. Journal of Air Force Engineering University(Natural Science Edition), 2003, 4(3): 50–54 doi: 10.3969/j.issn.1009-3516.2003.03.013
    ERIKSSON J and KOIVUNEN V. Complex random vectors and ICA models: Identifiability, uniqueness, and separability[J]. IEEE Transactions on Information Theory, 2006, 52(3): 1017–1029 doi: 10.1109/TIT.2005.864440
    MATSUOKA K. Minimal distortion principle for blind source separation[C]. Proceedings of the 41th SICE Annual Conference, Kitakyushu, Japan, 2002, 4: 2138–2143. doi: 10.1109/SICE.2002.1195729.
    付卫红, 杨小牛, 刘乃安, 等. 基于步长最优化的EASI盲源分离算法[J]. 四川大学学报(工程科学版), 2008, 40(1): 118–121 doi: 10.15961/j.jsuese.2008.01.023

    FU Weihong, YANG Xiaoniu, LIU Naian, et al. Step-size optimization based EASI algorithm for blind source separation[J]. Journal of Sichuan University(Engineering Science), 2008, 40(1): 118–121 doi: 10.15961/j.jsuese.2008.01.023
    VINCENT E, GRIBONVAL R, and FEVOTTE C. Performance measurement in blind audio source separation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4): 1462–1469 doi: 10.1109/TSA.2005.858005
    PHAM D T, SERVIERE C, and BOUMARAF H. Blind separation of speech mixtures based on nonstationarity[C]. International Symposium on Signal Processing and ITS Applications, Grenoble Cedex, France, 2003, 2: 73–76. doi: 10.1109/ISSPA.2003.1224818.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (2923) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return