Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Bo HU, Qiyao WANG, Hui FENG, Lingbing LUO. Adaptive Sensor Scheduling Algorithm for Target Tracking in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2033-2041. doi: 10.11999/JEIT171154
Citation: Bo HU, Qiyao WANG, Hui FENG, Lingbing LUO. Adaptive Sensor Scheduling Algorithm for Target Tracking in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2033-2041. doi: 10.11999/JEIT171154

Adaptive Sensor Scheduling Algorithm for Target Tracking in Wireless Sensor Networks

doi: 10.11999/JEIT171154
Funds:  The National Natural Science Foundation of China (61501124), The Public Security Bureau Science and Technology Development Foundation of Shanghai (2017012)
  • Received Date: 2017-12-06
  • Rev Recd Date: 2018-05-04
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • In the process of target tracking, the sensor scheduling algorithm can achieve the tradeoff between the tracking error and the energy consumption so as to extend the service life of the sensor network. The issue can be modeled as a Partially Observable Markov Decision Process (POMDP), which takes both short- and long- term losses of sensor scheduling into account and makes a better decision. A C-QMDP approximation algorithm suitable for continuous state space is proposed. The Markov Chain Monte Carlo (MCMC) method is used to derive the transfer function of belief state and calculate the instantaneous cost. The state discretization method is used to solve the approximation of future cost based on Markov Decision Process (MDP) iteration. Simulation results show that compared to the existing POMDP approximation algorithms, the proposed algorithm can reduce the cumulative losses and computation load in the tracking process by offline computation.
  • loading
  • ALCALA J M, URENA J U, HERNANDEZ A, et al. Sustainable homecare monitoring system by sensing electricity data[J]. IEEE Sensors Journal, 2017, 17(23): 7741–7749 doi: 10.1109/JSEN.2017.2713645
    MARTELLI T, BONGIOANNI C, COLONE F, et al. Security enhancement in small private airports through active and passive radar sensors[C]. 17th IEEE International Conference on Radar Symposium (IRS), Krakow, Poland, 2016: 1–5.
    SHI W Y and CHIAO J C. Neural network based real-time heart sound monitor using a wireless wearable wrist sensor[C]. IEEE Conference on Circuits and Systems Conference (DCAS), Arlington, USA, 2016: 1–4.
    ANGLEY D, SUVOROVA S, RISTIC B, et al. Sensor scheduling for target tracking in large multistatic sonobuoy fields[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Arlington, USA, 2017: 3146–3150.
    SONG R, WEI Q, and XIAO W. ADP-based optimal sensor scheduling for target tracking in energy harvesting wireless sensor networks[J]. Neural Computing and Applications, 2016, 27(6): 1543–1551 doi: 10.1007/s00521-015-1954-4
    YANG X, ZHANG W A, CHEN M Z Q, et al. Hybrid sequential fusion estimation for asynchronous sensor network-based target tracking[J]. IEEE Transactions on Control Systems Technology, 2017, 25(2): 669–676 doi: 10.1109/TCST.2016.2558632
    唐显锭, 冯辉, 杨涛, 等. 无线传感器网络中用于目标跟踪的节点规划算法[J]. 太赫兹科学与电子信息学报, 2014, 12(3): 355–361 doi: 10.11805/TKYDA201403.0355

    TANG Xianding, FENG Hui, YANG Tao, et al. Sensor scheduling for target tracking in wireless sensor networks[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(3): 355–361 doi: 10.11805/TKYDA201403.0355
    ZHANG H, AYOUB R, and SUNDARAM S. Sensor selection for Kalman filtering of linear dynamical systems: Complexity, limitations and greedy algorithms[J]. Automatica, 2017, 78: 202–210 doi: 10.1016/j.automatica.2016.12.025
    冉晓旻, 方德亮. 基于势博弈的分布式目标跟踪传感器分配算法[J]. 电子与信息学报, 2017, 39(11): 2748–2754 doi: 10.11999/JEIT170229

    RAN Xiaomin and FANG Deliang. Distributed sensor allocation algorithm for target tracking based on potential game[J]. Journal of Electronics&Information Technology, 2017, 39(11): 2748–2754 doi: 10.11999/JEIT170229
    SINGH P, CHEN M, CARLONE L, et al. Supermodular mean squared error minimization for sensor scheduling in optimal Kalman filtering[C]. IEEE Conference on American Control Conference (ACC), Seattle, USA, 2017: 5787–5794.
    ASGHAR A B, JAWAID S T, and SMITH S L. A complete greedy algorithm for infinite-horizon sensor scheduling[J]. Automatica, 2017, 81: 335–341 doi: 10.1016/j.automatica.2017.04.018
    SPAAN M T J. Partially Observable Markov Decision Processes[M]. Berlin Heidelberg: Springer, 2012: 387–414.
    ZOIS D S, LEVORATO M, and MITRA U. Active classification for POMDPs: A Kalman-like state estimator[J]. IEEE Transactions on Signal Processing, 2014, 62(23): 6209–6224 doi: 10.1109/TSP.2014.2362098
    ZOIS D S and MITRA U. Active state tracking with sensing costs: Analysis of two-states and methods for n-states[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2828–2843 doi: 10.1109/TSP.2017.2664049
    SHANI G, PINEAU J, and KAPLOW R. A survey of point-based POMDP solvers[J]. Autonomous Agents and Multi-Agent Systems, 2013, 27(1): 1–51 doi: 10.1007/s10458-012-9200-2
    LITTMAN M L, CASSANDRA A R, and KAELBLING L P. Learning policies for partially observable environments: Scaling up[C]. Proceedings of the 12th International Conference on Machine Learning, Tahoe City, USA, 1995: 362–370.
    RUSSELL S. Artificial Intelligence: A Modern Approach. Making Complex Decisions (Ch-17)[M]. Englewood Cliffs: Prentice-Hall, 2004: 645–692.
    HE Y and CHONG K P. Sensor scheduling for target tracking in sensor networks[C]. 43rd IEEE Conference on Decision and Control(CDC), Nassau, Bahamas, 2004: 743–748.
    CHONG E K P, KREUCHER C M, and HERO III A O. POMDP Approximation Using Simulation and Heuristics[M]. Boston, MA: Springer, 2008: 95–119.
    LI Y, KRAKOW L W, CHONG E K P, et al. Dynamic sensor management for multisensor multitarget tracking[C]. IEEE 40th Annual Conference on Information Sciences and Systems, Princeton, USA, 2006: 1397–1402.
    LI Y, KRAKOW L W, CHONG E K P, et al. Approximate stochastic dynamic programming for sensor scheduling to track multiple targets[J]. Digital Signal Processing, 2009, 19(6): 978–989 doi: 10.1016/j.dsp.2007.05.004
    BAR-SHALOM Y, LI X R, and KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software[M]. New York: John Wiley & Sons, 2004: 199–266.
    ALIPPI C and VANINI G. A RSSI-based and calibrated centralized localization technique for Wireless Sensor Networks[C]. Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, Pisa, Italy, 2006: 301–305.
    NIU R and VARSHNEY P K. Target location estimation in sensor networks with quantized data[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4519–4528 doi: 10.1109/TSP.2006.882082
    ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188 doi: 10.1109/78.978374
    RUSSELL S. Artificial Intelligence: A Modern Approach. Probabilistic Reasoning Over Time (Ch-15)[M]. Englewood Cliffs: Prentice-Hall, 2004: 566–609.
    HE Y and CHONG E K P. Sensor scheduling for target tracking: A Monte Carlo sampling approach[J]. Digital Signal Processing, 2006, 16(5): 533–545 doi: 10.1016/j.dsp.2005.02.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (2673) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return