Citation: | Haibo WANG, Wenhua HUANG, Yue JIANG. Compensative Coherent Processing Algorithm for Short Pulse Non-coherent Radar[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1823-1828. doi: 10.11999/JEIT171147 |
胡银福, 冯进军.用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4):350–360. DOI: 10.12000/JR16078
HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radar, 2016, 5(4):350–360. DOI: 10.12000/JR16078
|
钱宝良.国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015, 4(2):2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015, 4(2): 2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
|
XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3):554–562.DOI: 10.1063/1.4944915
|
BLYAKHMAN A B, DAVID C, ROGER W H, et al. Nanosecond giga-watt radar: Indication of small targets moving among heavy clutter[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191.
|
BLYAKHMAN A B, CLUNIE D, MESIATS G, et al. Analysis of nanosecond gigawatt radar[C]. Quasi-Optical Control of Intense Microwave Transmission, Netherlands, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21.
|
RYSKIN N M and TITOV V N. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8):1270–1275.DOI: 10.1109/TPS.2016.2517002
|
SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 201360(1): 494–497. DOI: 10.1109/TED.2012.2230400
|
王乐, 周子超, 李春化. 提高非相参雷达发射信号相干性的研究[J]. 火控雷达技术, 2012, 41(2): 30–33
WANG Le, ZHOU Zhichao, and LI Chunhua. Study on improving coherence of non-coherent radar transmitting signal[J]. Fire Control Radar Technology, 2012,41(2):30–33
|
Trapp R L. Improved coherent-on-receive radar processing with dynamic transversal filters[C]. Proceedings of the IEEE International Radar Conferenc, London, 1982: 505–508.
|
丁建江, 张贤达. 接收相干处理算法的分析与评述[J]. 系统工程与电子技术, 2002, 24(11): 25–28
DING Jianjiang and ZHANG Xianda. Analysis and discussions on the coherent-on-receive processing arithmetic[J]. Systems Engineering and Electronics , 2002, 24(11):25–28
|
ZHOU Ruixue, XIA Guifen, ZHAO Yue , et al. Coherent signal processing method for frequency-agile radar[C]. IEEE International Conference on Electronic Measurement & Instruments, Qingdao, China, 2015: 431–434. doi: 10.1109/ICEMI.2015.7494227.
|
GAO Jing, Li F, WANG Chao , et al. ISAR motion compensation based on matching pursuit with Chebyshev polynomials under low SNR[C]. IEEE International Conference on Signal Processing, Communications and Computing, Hong Kong, China, 2016: 1–5. doi: 10.1109/ICSPCC.2016.7753674.
|
CHEN Yichang, LI Gang, Zhang Qingjun, et al. Motion Compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):551–562. DOI: 10.1109/TGRS.2016.2611522
|
田超, 文树梁.基于非均匀FFT的长时间相参积累算法[J].电子与信息学报, 2014, 36(6):1374–1380 DOI: 10.3724/SP.J.1146.2013.01264
TIAN Chao and WEN Shuliang. A long-term coherent integration algorithm based on non-uniform fast Fourier transform[J]. Journal of Electronics & Information Technology , 2014, 36(6): 1374–1380 DOI: 10.3724/SP.J.1146.2013.01264
|
ZOU Yongqiang, GAO Xunzhang, and LI Xiang. A sparse representation and GTD model parameter estimation based multiband radar signal coherent compensation method[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059305.
|
黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2010: 229–283.
HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Character[M]. Bejing: Publishing House of Electronics Industry, 2010: 229–283.
|
GUAN Yin, GONG, Shuxi, ZHANG Shuai, et al. Improved time-domain physical optics for transient scattering analysis of electrically large conducting targets[J]. IET Microwaves, Antennas and Propagation , 2011, 5(5):625–629. DOI: 10.1049/iet-map.2010.0277
|