Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Yanjing SUN, Sainan WANG, Yunkai SHI, Xiao YUN, Wenjuan SHI. Visual Tracking Algorithm Based on Global Context and Feature Dimensionality Reduction[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2135-2142. doi: 10.11999/JEIT171143
Citation: Yanjing SUN, Sainan WANG, Yunkai SHI, Xiao YUN, Wenjuan SHI. Visual Tracking Algorithm Based on Global Context and Feature Dimensionality Reduction[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2135-2142. doi: 10.11999/JEIT171143

Visual Tracking Algorithm Based on Global Context and Feature Dimensionality Reduction

doi: 10.11999/JEIT171143
Funds:  The Natural Science Foundation of Jiangsu Province (BK20150204), The State Key Research Development Program (2016YFC0801403), The National Natural Science Foundation of China (51504214, 51504255, 51734009, 61771417), The Research Development Programme of Jiangsu Province (BE2015040)
  • Received Date: 2017-12-04
  • Rev Recd Date: 2018-05-02
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • Tracking effects of algorithms using correlation filter are easily interfered by deformation, motion blur and background clustering, which can result in tracking failure. To solve these problems, a visual tracking algorithm based on global context and feature dimensionality reduction is proposed. Firstly, the image patches uniformly around the target are extracted as negative sample, and thus the similar background patches around the target are suppressed. Then, an update strategy based on principal component analysis is proposed, constructing the matrix to reduce the dimensionality of HOG feature, which can reduce the redundancy of feature when it updates. Finally, the color features are added to represent the motion target and the response of the system states are adaptively fused according to the features. Experiments are performed on recent online tracking benchmark. The results show that the proposed method performs favorably both in terms of accuracy and robustness compared to the state-of-the-art trackers such as Staple or KCF. When deformation occur, the proposed method is shown to outperform the Staple tracker and KCF algorithm by 8.3% and 13.1% respectively in median distance precision.
  • loading
  • 齐苑辰, 吴成东, 陈东岳, 等. 基于稀疏表达的超像素跟踪算 法[J]. 电子与信息学报, 2015, 37(3): 529–535 doi: 10.11999/JEIT140374

    QI Yuanchen, WU Chengdong, CHEN Dongyue, et al. Superpixel tracking based on sparse representation[J]. Journal of Electronics&Information Technology, 2015, 37(3): 529–535 doi: 10.11999/JEIT140374
    JI Hui, LING Haibin, WU Yi, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1830–1837.
    KWON J and LEE K M. Tracking by sampling trackers[C]. International Conference on Computer Vision, Barcelona, Spain, 2011: 1195–1202.
    LIU Baiyang, HUANG Junzhou, KULIKOWAKI C, et al. Robust visual tracking using local sparse appearance model and k-selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2968–2981 doi: 10.1109/tpami.2012.215
    HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[C]. International Conference on Computer Vision, Barcelona, Spain, 2011: 263–270.
    KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 49–56.
    BABENKO B, YANG Minghsuang, and BELONGIE S. Visual tracking with online multiple instance learning[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 983–990.
    孙航, 李晶, 杜博, 等. 基于多阶段学习的相关滤波目标跟踪[J]. 电子学报, 2017, 45(10): 2337–2342 doi: 10.3969/j.issn.0372-2112.2017.10.004

    SUN Hang, LI Jing, DU Bo, et al. Correlation filtering target tracking based on online multi-lifespan learning[J]. Acta Electronica Sinca, 2017, 45(10): 2337–2342 doi: 10.3969/j.issn.0372-2112.2017.10.004
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550.
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of European Conference on Computer Vision, Florence, Italy, 2012: 702–715.
    HENRIQUES J F, RUI C, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2015, 37(3): 583–596 doi: 10.1109/tpami.2014.2345390
    DANELLJAN M, HÄGER G, KHAN F, et al. Accurate scale estimation for robust visual tracking[C]. Proceedings of British Machine Vision Conference, Nottingham, UK, 2014: 65.1–65.11.
    MUELLER M, SMITH N, and GHANEM B. Context-aware correlation filter tracking[C]. IEEE International Conference on Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1387–1395.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. IEEE International Conference on Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409.
    邬战军, 牛敏, 许冰, 等. 基于谱回归特征降维与后向传播神经网络的识别方法研究[J]. 电子与信息学报, 2016, 38(4): 978–984 doi: 10.11999/JEIT150781

    WU Zhanjun, NIU Min, XU Bing, et al. Research on recognition method based on spectral regression and back propagation neural network[J]. Journal of Electronics&Information Technology, 2016, 38(4): 978–984 doi: 10.11999/JEIT150781
    侯志强, 张浪, 余旺盛, 等. 基于快速傅里叶变换的局部分块视觉跟踪算法[J]. 电子与信息学报, 2015, 37(10): 2397–2404 doi: 10.11999/JEIT150183

    HOU Zhiqiang, ZHANG Lang, YU Wangsheng, et al. Local patch tracking algorithm based on fast fourier transform[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2397–2404 doi: 10.11999/JEIT150183
    DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2017, 39(8): 1561–1575 doi: 10.1109/tpami.2016.2609928
    熊昌镇, 赵璐璐, 郭芬红. 自适应特征融合的核相关滤波跟踪 算法[J]. 计算机辅助设计与图形学学报, 2017, 29(6): 1068–1074 doi: 10.3969/j.issn.1003-9775.2017.06.012

    XIONG Changzhen, ZHAO Lulu, and GUO Fenhong. Kernelized correlation filters tracking based on adaptive feature fusion[J]. Journal of Computer-Aided Design&Computer Graphics, 2017, 29(6): 1068–1074 doi: 10.3969/j.issn.1003-9775.2017.06.012
    WU Yi, LIM J, and YANG Minghsuan. Online object tracking: a benchmark[C]. Proceedings of the Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (1662) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return