Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Huiqing BAI, Liang JIN, Kaizhi HUANG, Ming YI. Secrecy Polar Coding in Systems with Probabilistic DF Relay[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142
Citation: Huiqing BAI, Liang JIN, Kaizhi HUANG, Ming YI. Secrecy Polar Coding in Systems with Probabilistic DF Relay[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142

Secrecy Polar Coding in Systems with Probabilistic DF Relay

doi: 10.11999/JEIT171142
Funds:  The Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61521003), The National 863 Program of China (2015AA01A708), The National Natural Science Foundation for Young Scientists of China (61501516)
  • Received Date: 2017-12-04
  • Rev Recd Date: 2018-04-26
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • A relay aided secrecy polar coding method is proposed for the communication systems where the relay uses Decode-and-Forward (DF) in probability. It ensures the transmission reliability and improves the secrecy rate. First, the transmitter encodes the secrecy bits in two layers: the first layer is designed over the virtual Binary Erasure Channel (BEC) that generated by the probabilistic DF relay, and the second layer is designed over the real transmission channels. After receiving the codeword, relay decodes and extracts the frozen bits which the legitimate user can not obtain directly in probability, and re-encodes them by classical secrecy polar coding. Finally, the receiver decodes the received codewords from the relay and the transmitter in turn. The theory and simulation results verify that the legitimate user is able to decode reliable, while the eavesdropper can not obtain any information about the secrecy bits. Moreover, the secrecy rate increases as the code length and the relay forwarding probability increase, and it outperforms the classical secrecy polar coding method.
  • loading
  • ZOU Yulong, ZHU Jia, WANG Xinbin, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727–1765 doi: 10.1109/JPROC.2016.2558521
    XIAO Shuaifang, GUO Yunfei, HUANG Kaizhi, et al. High-rate secret key generation aided by multiple relays for Internet of things[J]. Electronics Letters, 2017, 53(17): 1198–1200 doi: 10.1049/el.2017.2346
    ZHANG Yingxian, YANG Zhen, LIU Aijun, et al. Secure transmission over the wiretap channel using polar codes and artificial noise[J]. IET Communications, 2017, 11(3): 377–384 doi: 10.1049/iet-com.2016.0429
    白慧卿, 金梁, 肖帅芳, 等. 多天线系统中面向物理层安全的极化编码方法[J]. 电子与信息学报, 2017, 39(11): 2587–25931 doi: 10.11999/JEIT170068

    BAI Huiqing, JIN Liang, XIAO Shuaifang, et al. Polar codes for physical layer security in multi-antenna systems[J]. Journal of Electronics&Information Technology, 2017, 39(11): 2587–25931 doi: 10.11999/JEIT170068
    OZAROW L H and WYNER A D. Wire-tap channel II[J]. AT&T Bell System Technical Journal, 1984, 63(10): 2135–2137.
    CASSITO Y and BANDIC Z. Low complexity wiretap codes with security and error-correction guarantees [C]. IEEE Information Theory Workshop, Dublin, Ireland, 2010: 1–5.
    BELFIORE J C and OGGIER F. Lattice codes design for the Rayleigh fading wire-tap channel [C]. IEEE International Conference on Communications Workshops, Kyoto, Japan, 2011: 1–5.
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetry binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073 doi: 10.1109/TIT.2009.2021379
    MAHDAVIFAR H and VARDY A. Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6428–6443 doi: 10.1109/TIT.2011.2162275
    SASOGLU E and VARDY A. A new polar coding scheme for strong security on wiretap channels[C]. IEEE Internationnal Symposium on Information Theory Proceedings (ISIT), Istanbul, Turkey, 2013: 1117–1121.
    MIRGHASEMI H and BELFIORE J. The un-polarized bit-channels in the wiretap polar coding scheme [C]. International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems, Manchester, Denmark, 2014: 1-5.
    SERRANO R B, THOBABEN R, ANDERSSON M, et al. Polar codes for cooperative relaying[J]. IEEE Transactions on Communications, 2012, 60(11): 3263–3273 doi: 10.1109/TCOMM.2012.081412.110266
    DUO Bin, WANG Peng, LI Yonghui, et al. Secure transmission for relay-eavesdropper channels using polar coding [C]. IEEE International Conference on Communications, Sydney, Australia, 2014: 2197–2202.
    DUO Bin, ZHONG Xiaoling, and GUO Yong. Practical polar code construction for degraded multiple-relay networks[J]. China Communications, 2017, 14(4): 127–139 doi: 10.1109/CC.2017.7927571
    KARAS D S, PAPPI K N, and KARAGIANNIDIS G K. Smart decode-and-forward relaying with polar codes[J]. IEEE Wireless Communications Letters, 2014, 3(1): 62–65 doi: 10.1109/WCL2013.111213.130639
    SOLIMAN T, YANG F, EJAZ S, et al. Decode and forward polar coding scheme for receive diversity: A relay partially perfect retransmission for half-duplex wireless relay channels[J]. IET Communications, 2017, 11(2): 185–191 doi: 10.1049/iet-com.2016.0915
    SI Hongbo, KOYLUOGLU O O, and VISHWANATH S. Hierarchical polar coding for achieving secrecy over state-dependent wiretap channels without any instantaneous CSI[J]. IEEE Transactions on Communications, 2016, 64(9): 3609–3623 doi: 10.1109/TCOMM.2016.2592523
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1462) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return