Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Hongyan ZANG, Jiu LI, Guodong LI. A One-dimensional Discrete Map Chaos Criterion Theorem with Applications in Pseudo-random Number Generator[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1992-1997. doi: 10.11999/JEIT171139
Citation: Hongyan ZANG, Jiu LI, Guodong LI. A One-dimensional Discrete Map Chaos Criterion Theorem with Applications in Pseudo-random Number Generator[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1992-1997. doi: 10.11999/JEIT171139

A One-dimensional Discrete Map Chaos Criterion Theorem with Applications in Pseudo-random Number Generator

doi: 10.11999/JEIT171139
Funds:  The National Natural Science Foundation of China (11461063), The Xinjiang Uygur Autonomous Region Natural Science Foundation (2017D01A24)
  • Received Date: 2017-12-04
  • Rev Recd Date: 2018-05-02
  • Available Online: 2018-06-07
  • Publish Date: 2018-08-01
  • A novel one-dimensional discrete chaotic criterion is firstly constructed by studying the modular operation of the discrete dynamical systems. The judgement of the Marotto theorem is used to prove that the suggested dynamical systems are chaotic. Secondly, several special chaotic systems satisfied with the conditions of this paper are given, and the bifurcation diagram and Lyapunov exponential spectrum are also analyzed. Numerical simulations show that the proposed chaotic systems have the positive Lyapunov exponent, which indicates the accuracy of the proposed theory. Additionally, a Pseudo-Random Number Generator (PRNG) is also designed based on the given new chaotic system. Using SP800-22 test suit, the results show that the output sequence of PRNG has good pseudorandom. Finally, as an application of the PRNG, an image encryption algorithm is given. The proposed encryption scheme is highly secure Key space of 2747 and can resist against the statistical and exhaustive attacks based on the experimental results.
  • loading
  • LI T Y and YORKE J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82(10): 985–992. DOI: 10.2307/2318254.
    YU Xingmei, MIN Lequan, and CHEN Tianyu. Chaos criterion on some quadric polynomial maps and design for chaotic pseudorandom number generator[C]. Seventh International Conference on Natural Computation, Shanghai, 2011: 1373–1376.
    周海玲, 宋恩彬. 二次多项式映射的3-周期点判定[J]. 四川大学学报(自然科学版), 2009, 46(3): 561–564. DOI: 103969/j.issn.0490-6756.2009.03-009.

    ZHOU Hailing and SONG Enbin. Discrimination of the 3-periodic points of a quadratic polynomial[J]. Journal of Sichuan University(Natural Science Edition), 2009, 46(3): 561–564. DOI: 103969/j.issn.0490-6756.2009.03-009.
    YANG Xiuping, MIN Lequan, and WANG Xue. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption[J]. Chaos, 2015, 25(5): 053104. DOI: 10.1063/1.4917380.
    MAROTTO F R. Snap-back repellers imply chaos in Rn[J]. Journal of Mathematical Analysis & Applications, 1978, 63(1): 199–223. DOI: 10.1016/0022-247X(78)90115-4.
    CHEN Guangrong and LAI Dejian. Feedback control of lyapunov exponents for discrete-time dynamical systems[J]. International Journal of Bifurcation & Chaos, 1996, 6(7): 1341–1349. DOI: 10.1142/S021812749600076X.
    HAN Dandan, MIN Lequan, and CHEN Guangrong. A stream encryption scheme with both key and plaintext avalanche effects for designing chaos-based pseudorandom number generator with application to image encryption[J]. International Journal Bifurcation & Chaos, 2016, 26(5): 1650091-1. DOI: 10.1142/S0218127416500917.
    韩丹丹, 闵乐泉, 赵耿. 八维广义同步系统在伪随机数发生器中的应用[J]. 电子与信息学报, 2016, 38(5): 1158–1165. DOI: 10.11999/JEIT150899.

    HAN Dandan, MIN Lequan, and ZHAO Geng. Application of 8-dimensional generalized synchronization system in pseudorandom number generator[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1158–1165. DOI: 10.11999/JEIT150899.
    RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R]. National Institute of Standards and Technology Special Publication, 2010.
    LI Pei, MIN Lequan, ZANG Hongyan, et al. A generalized chaos synchronization-based pseudo-random generator number and performance analysis[C]. International Conference on Communications Circuits and Systems, Chengdu, China, 2010: 781–785.
    WANG Xingyuan, LIU Chuanming, XU Dahai, et al.. Image encryption scheme using chaos and simulated annealing algorithm[J]. Nonlinear Dynamics, 2016, 84(3): 1417–1429. DOI: 10.1007/s11071-015-2579-y.
    LI Yueping, WANG Chunhua, and CHEN Hua. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation[J]. Optics & Lasers in Engineering, 2017, 90: 238–246. DOI: 10.1016/j.optlaseng.2016.10.020.
    WANG Xingyuan, LIU Chuanming, and ZHANG Huili. An effective and fast image encryption algorithm based on chaos and interweaving of ranks[J]. Nonlinear Dynamics, 2016, 84(3): 1595–1607. DOI: 10.1007/s11071-015-2590-3.
    GUESMI R, FARAH M A B, KACHOURI A, et al.. A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2[J]. Nonlinear Dynamics, 2016, 83(3): 1123–1136. DOI: 10.1007/s11071-015-2392-7.
    BELAZI A, EL-LATIF A A A, DIACONU A V, et al.. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Optics & Lasers in Engineering, 2017, 88: 37–50. DOI: 10.1016/j.optlaseng.2016.07.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (2179) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return