Citation: | Hongyan ZANG, Jiu LI, Guodong LI. A One-dimensional Discrete Map Chaos Criterion Theorem with Applications in Pseudo-random Number Generator[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1992-1997. doi: 10.11999/JEIT171139 |
LI T Y and YORKE J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82(10): 985–992. DOI: 10.2307/2318254.
|
YU Xingmei, MIN Lequan, and CHEN Tianyu. Chaos criterion on some quadric polynomial maps and design for chaotic pseudorandom number generator[C]. Seventh International Conference on Natural Computation, Shanghai, 2011: 1373–1376.
|
周海玲, 宋恩彬. 二次多项式映射的3-周期点判定[J]. 四川大学学报(自然科学版), 2009, 46(3): 561–564. DOI: 103969/j.issn.0490-6756.2009.03-009.
ZHOU Hailing and SONG Enbin. Discrimination of the 3-periodic points of a quadratic polynomial[J]. Journal of Sichuan University(Natural Science Edition), 2009, 46(3): 561–564. DOI: 103969/j.issn.0490-6756.2009.03-009.
|
YANG Xiuping, MIN Lequan, and WANG Xue. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption[J]. Chaos, 2015, 25(5): 053104. DOI: 10.1063/1.4917380.
|
MAROTTO F R. Snap-back repellers imply chaos in Rn[J]. Journal of Mathematical Analysis & Applications, 1978, 63(1): 199–223. DOI: 10.1016/0022-247X(78)90115-4.
|
CHEN Guangrong and LAI Dejian. Feedback control of lyapunov exponents for discrete-time dynamical systems[J]. International Journal of Bifurcation & Chaos, 1996, 6(7): 1341–1349. DOI: 10.1142/S021812749600076X.
|
HAN Dandan, MIN Lequan, and CHEN Guangrong. A stream encryption scheme with both key and plaintext avalanche effects for designing chaos-based pseudorandom number generator with application to image encryption[J]. International Journal Bifurcation & Chaos, 2016, 26(5): 1650091-1. DOI: 10.1142/S0218127416500917.
|
韩丹丹, 闵乐泉, 赵耿. 八维广义同步系统在伪随机数发生器中的应用[J]. 电子与信息学报, 2016, 38(5): 1158–1165. DOI: 10.11999/JEIT150899.
HAN Dandan, MIN Lequan, and ZHAO Geng. Application of 8-dimensional generalized synchronization system in pseudorandom number generator[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1158–1165. DOI: 10.11999/JEIT150899.
|
RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R]. National Institute of Standards and Technology Special Publication, 2010.
|
LI Pei, MIN Lequan, ZANG Hongyan, et al. A generalized chaos synchronization-based pseudo-random generator number and performance analysis[C]. International Conference on Communications Circuits and Systems, Chengdu, China, 2010: 781–785.
|
WANG Xingyuan, LIU Chuanming, XU Dahai, et al.. Image encryption scheme using chaos and simulated annealing algorithm[J]. Nonlinear Dynamics, 2016, 84(3): 1417–1429. DOI: 10.1007/s11071-015-2579-y.
|
LI Yueping, WANG Chunhua, and CHEN Hua. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation[J]. Optics & Lasers in Engineering, 2017, 90: 238–246. DOI: 10.1016/j.optlaseng.2016.10.020.
|
WANG Xingyuan, LIU Chuanming, and ZHANG Huili. An effective and fast image encryption algorithm based on chaos and interweaving of ranks[J]. Nonlinear Dynamics, 2016, 84(3): 1595–1607. DOI: 10.1007/s11071-015-2590-3.
|
GUESMI R, FARAH M A B, KACHOURI A, et al.. A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2[J]. Nonlinear Dynamics, 2016, 83(3): 1123–1136. DOI: 10.1007/s11071-015-2392-7.
|
BELAZI A, EL-LATIF A A A, DIACONU A V, et al.. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Optics & Lasers in Engineering, 2017, 88: 37–50. DOI: 10.1016/j.optlaseng.2016.07.010.
|