Advanced Search
Volume 40 Issue 10
Sep.  2018
Turn off MathJax
Article Contents
Jianming ZHANG, Xiaokang JIN, Honglin WU, You WU. Multi-model Real-time Compressive Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2373-2380. doi: 10.11999/JEIT171128
Citation: Jianming ZHANG, Xiaokang JIN, Honglin WU, You WU. Multi-model Real-time Compressive Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2373-2380. doi: 10.11999/JEIT171128

Multi-model Real-time Compressive Tracking

doi: 10.11999/JEIT171128
Funds:  The National Natural Science Foundation of China (61402053, 61772454, 61811530332), The Scientific Research Fund of Hunan Provincial Education Department (16A008)
  • Received Date: 2017-11-30
  • Rev Recd Date: 2018-07-16
  • Available Online: 2018-07-25
  • Publish Date: 2018-10-01
  • Object tracking is easily influenced by illumination, occlusion, scale, background clutter, and fast motion, and it requires higher real-time performance. The object tracking algorithm based on compressive sensing has a better real-time performance but performs weakly in tracking when object appearance is changed greatly. Based on the framework of compressive sensing, a Multi-Model real-time Compressive Tracking (MMCT) algorithm is proposed, which adopts the compressive sensing to decrease the high dimensional features for the tracking process and to satisfy the real-time performance. The MMCT algorithm selects the most suitable classifier by judging the maximum classification score difference of classifiers in the previous two frames, and enhances the accuracy of location. The MMCT algorithm also presents a new model update strategy, which employs the fixed or dynamic learning rates according to the differences of decision classifiers and improves the precision of classification. The multi-model introduced by MMCT does not increase the computational burden and shows an excellent real-time performance. The experimental results indicate that the MMCT algorithm can well adapt to illumination, occlusion, background clutter and plane-rotation.
  • loading
  • 郁道银, 王悦行, 陈晓冬, 等. 基于随机投影和稀疏表示的跟踪算法[J]. 电子与信息学报, 2016, 38(7): 1602–1608 doi: 10.11999/JEIT151064

    YU Daoyin, WANG Yuexing, CHEN Xiaodong, et al. Visual tracking based on random projection and sparse representation[J]. Journal of Electronics&Information Technology, 2016, 38(7): 1602–1608 doi: 10.11999/JEIT151064
    田鹏, 吕江花, 马世龙, 等. 基于局部差别性分析的目标跟踪算法[J]. 电子与信息学报, 2017, 39(11): 2635–2643 doi: 10.11999/JEIT170045

    TIAN Peng, LÜ Jianghua, MA Shilong, et al. Robust object tracking based on local discriminative analysis[J]. Journal of Electronics&Information Technology, 2017, 39(11): 2635–2643 doi: 10.11999/JEIT170045
    COLLINS R T. Mean-shift blob tracking through scale space[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, USA, 2003, 2: 234–240.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006, 1: 798–805. doi: 10.1109/CVPR.2006.256.
    ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[J]. International Journal of Computer Vision, 2015, 111(2): 213–228 doi: 10.1007/s11263-014-0740-6
    BABENKO B, YANG M H, and BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619–1632 doi: 10.1109/TPAMI.2010.226
    GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of the British Machine Vision Conference, Edinburgh, UK, 2006: 47–56.
    KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422 doi: 10.1109/TPAMI.2011.239
    ZHANG Kaihua, ZHANG Lei, and YANG M H. Real-time compressive tracking[C]. Proceedings of the European Conference on Computer Vision, Florence, Italy, 2012: 864–877. doi: 10.1007/978-3-642-33712-3_62.
    SUN Hang, LI Jing, CHANG Jun, et al. Efficient compressive sensing tracking via mixed classifier decision[J]. Science China Information Sciences, 2016, 59(7): 072102 doi: 10.1007/s11432-015-5424-5
    HELD D, THRUN S, and SAVARESE S. Learning to track at 100 fps with deep regression networks[C]. Proceedings of the European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 749–765. doi: 10.1007/978-3-319-46448-0_45.
    NAM H and HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4293–4302. doi: 10.1109/CVPR.2016.465.
    SONG Yibin, MA Chao, GONG Linjun, et al. CREST: Convolutional residual learning for visual tracking[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2555–2564. doi: 10.1109/ICCV.2017.279.
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.
    DIACONIS P and FREEDMAN D. Asymptotics of graphical projection pursuit[J]. Annals of Statistics, 1984, 12(3): 793–815 doi: 10.1214/aos/1176346703
    HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109 doi: 10.1109/TPAMI.2015.2509974
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (2235) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return