Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Yang CAO, Han ZHANG, Qiaoling TU, Xiaohong LI, Xiaofeng PENG. Concatenated Polar Codes Scheme Based on Segmented Puncturing[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1941-1948. doi: 10.11999/JEIT171113
Citation: Yang CAO, Han ZHANG, Qiaoling TU, Xiaohong LI, Xiaofeng PENG. Concatenated Polar Codes Scheme Based on Segmented Puncturing[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1941-1948. doi: 10.11999/JEIT171113

Concatenated Polar Codes Scheme Based on Segmented Puncturing

doi: 10.11999/JEIT171113
Funds:  The National Natural Science Foundation of China (61205106), China Postdoctoral Science Foundation (2014M552329), The Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (KJ1500934, KJ120827), Chongqing Municipal Science and Technology Commission’s Special Project (cstc2017shmsA40019)
  • Received Date: 2017-11-27
  • Rev Recd Date: 2018-04-18
  • Available Online: 2018-05-30
  • Publish Date: 2018-08-01
  • Polar codes have outstanding error correction performance, but the code length of conventional polar codes is not compatible because of their coding method. To construct rate-compatible polar codes, a segmented puncturing method is proposed. Using the rate of polarization, the puncturing effect is measured and the codeword is removed to make the largest rate of polarization, which is the optimal puncturing mode. As the first codeword of the optimal puncturing mode is 0, the parity check codes are introduced to detect the decoding error of preceding segments codeword. The decoding performance of the method is simulated, results show that this method can obtain about 0.7 dB coding gain at 10–3 bit error rate compared with the traditional puncturing method, which can effectively improve the performance of the punctured polar codes.
  • loading
  • ARIKAN E and TELATAR E. On the rate of channel polarization[C]. 2009 IEEE International Symposium on Information Theory, Seoul, Korea, 2009: 1493–1495.
    SASOGLU E, TELATAR E, and ARIKAN E. Polarization for arbitrary discrete memoryless channels[C]. IEEE Information Theory Workshop, Taormina, Italy, 2009: 144–148.
    VANGALA H, HONG Y, and VITERBO E. Efficient algorithms for systematic polar encoding[J]. IEEE Communications Letters, 2016, 20(1): 17-20. DOI: 10.1109/LCOMM.2015.2497220.
    TAHIR B and RUPP M. New construction and performance analysis of polar codes over AWGN channels[C]. 2017 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, 2017: 1–4.
    NIU Kai and CHEN Kai. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668-1671. DOI: 10.1109/LCOMM.2012.090312.121501.
    SHARMA A and SALIM M. Polar code: The channel code contender for 5G scenarios[C]. IEEE International Conference on Computer, Communications and Electronics, Jaipur, India, 2017: 676–682.
    CHANDESRIS L, SAVIN V, and DECLERCQ D. On puncturing strategies for polar codes[C]. IEEE International Conference on Communications Workshops, Paris, France, 2017: 766–771.
    BIOGLIO V, GABRY F, and LAND I. Low-complexity puncturing and shortening of polar codes[C]. Wireless Communications and Networking Conference Workshops, San Francisco, USA, 2017: 1–6.
    ESLAMI A and PISHRO N. A practical approach to polar codes[C]. IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 16–20.
    HONG S N, HUI D, and MARIĆ I. On the catastrophic puncturing patterns for finite-length polar codes[C]. Signals, Systems and Computers, 2016, Asilomar Conference, Pacific Grove, USA, 2017: 235–239.
    NIU Kai, CHEN Kai, and LIN Jiaru. Beyond turbo codes: Rate-compatible punctured polar codes[C]. IEEE International Conference on Communications, Pacific Grove, USA, 2013: 3423–3427.
    WANG Runxin and LIU Rongke. A novel puncturing scheme for polar codes[J]. IEEE Communications Letters, 2014, 18(12): 2081–2084. DOI: 10.1109/LCOMM.2014.2364845.
    KORADA S B, ŞAŞOǦLU E, and URBANKE R. Polar codes: Characterization of exponent, bounds, and constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6253-6264. DOI: 10.1109/TIT.2010.2080990.
    LEE M K and YANG K. The exponent of a polarizing matrix constructed from the Kronecker product[J]. Designs Codes & Cryptography, 2014, 70(3): 313-322. DOI: 10.1007/s10623-012-9689-z.
    SHIN D M, LIM S C, and YANG K. Mapping selection and code construction for 2.m-ary polar-coded modulation[J]. IEEE Communications Letters, 2012, 16(6): 905-908. DOI: 10.1109/LCOMM.2012.040912.120070
    SHIN D M, LIM S C, and YANG K. Design of Length-compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593-2599. DOI: 10.1109/TCOMM.2013.052013.120543.
    AFISIADIS O, BALATSOUKAS-STIMMING A, and BURG A. A low-complexity improved successive cancellation decoder for polar codes[C]. Signals, Systems and Computers, Asilomar Conference, Pacific Grove, USA, 2014: 2116–2120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (2276) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return