Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
HUANG Liqin, ZHU Piao. Improved Kernel Correlation Filtering Tracking for Vehicle Video[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109
Citation: HUANG Liqin, ZHU Piao. Improved Kernel Correlation Filtering Tracking for Vehicle Video[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109

Improved Kernel Correlation Filtering Tracking for Vehicle Video

doi: 10.11999/JEIT171109
Funds:

The National Natural Science Foundation of China (61471124), The Major Science and Technology Projects in Fujian Proviuce (2017H6009, 2018H0018), The Cernet Innovation Projects (NGII20160208, NGII20170201)

  • Received Date: 2017-11-27
  • Rev Recd Date: 2018-04-18
  • Publish Date: 2018-08-19
  • For videos captured by in-car cameras, the filter-based tracking is a challenging task due to complex environments and mutable object scales. A scale adaptive tracking filter is proposed based on the background information. Firstly, the relative motion of each object is estimated by extracting features from gradient histograms between frames. Then, the object location on the next frame is determined and utilized to delimit an image block. Finally, the object scale is obtained through dynamic scaling pyramid model within image block. The proposed algorithm is examined by 27 in-car videos including 23 KITTI videos and 4 domestic videos. In experiments, the proposed algorithm suppresses effectively the interferences of environments and objects. It achieves more accurate and more robust object tracking than several popular benchmarks including KCF, DSST, SAMF, SATPLE.
  • loading
  • 刘红亮, 周生华, 刘宏伟, 等. 一种航迹恒虚警的目标检测跟踪一体化算法[J]. 电子与信息学报, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638. LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics Information Technology, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638.
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. Computer Vision and Pattern Recognition, San Francisco, 2010: 2544-2550.
    HENRIQUES J F, RUI C, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. European Conference on Computer Vision, Florence, 2012: 702-715.
    HENRIQUES J F, RUI C, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/tpami.2014.2345390.
    毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921. BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of Electronics Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921.
    QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedged deep tracking[J]. Computer Vision and Pattern Recognition, 2016, 4303-4311. doi: 10.1109/cvpr.2016.466.
    DANELLJAN M, HGER G, KHAN F S, et al. Accurate Scale Estimation for Robust Visual Tracking[C]. British Machine Vision Conference, Nottingham, 2014: 61-65.
    LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. Eu-ropean Conference on Computer Vision, 2014, 8926: 254-265. doi: 10.1007/978-3-319-16181-5_18.
    XU Yulong, WANG Jiabao, LI Hang, et al. Patch-based scale calculation for real-time visual tracking[J]. IEEE Signal Processing Letters, 2015, 23(1): 40-44. doi: 10.1109/wcsp. 2015.7341015.
    AKIN O, ERDEM E, ERDEM A, et al. Deformable part- based tracking by coupled global and local corr-elation filters[J]. Journal of Visual Communication Image Representation, 2016, 38(C): 763-774. doi: 10.1016/j.jvcir. 2016.04.018.
    YAO Rui, XIA Shixiong, SHEN Fumin, et al. Exploiting spatial structure from parts for adaptive kerneli-zed correlation filter tracker[J]. IEEE Signal Processing Letters, 2016, 23(5): 658-662. doi: 10.1109/lsp.2016.2545705.
    CAMPLANI M, HANNUNA S, MIRMEHDI M, et al. Real- time RGB-D tracking with depth scaling kern-elised correlation filters and occlusion handling[C]. British Machine Vision Conference, SWANSEA, 2015. 2015: 141-145. doi: 10.5244/c.29.145.
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Robust Visual Tracking via Hierarchical Convolutional Features[J]. Computer Vision and Pattern Recognition, 2017, (2017): 425-434. doi: 10.1007/978-3-319-70090-8_44.
    DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]. Computer Vision and Pattern Recognition, Honolulu, 2017: 21-26. doi: 10.1109/ cvpr.2017.733.
    DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visua-l tracking[C]. International Conference on Computer Vision, Santiago, 2015: 4310-4318. doi: 10.1109/iccv.2015.490.
    GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[J]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017: 21-26. doi: 10.1109/iccv.2017.129.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Computer Vision and Pattern Recognition,Washington, 2014: 1090-1097.
    GALOOGAHI H K, SIM T, and LUCEY S. Multi-channel correlation filters[C]. IEEE International Confer-ence on Computer Vision, Sydney, 2013: 3072-3079.
    RUI C and BATISTA J. Beyond hard negative mining: efficient detector learning via block-circulant deco- mposition[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 2760-2767.
    BODDETI V N, KANADE T, and KUMAR B V K V. Correlation filters for object alignment[C]. Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2291-2298.
    MUELLER M, SMITH N, and GHANEM B. Context-aware correlation filter tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 1387-1395.
    GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. doi: 10.1177/ 0278364913491297.
    WU Yi, LIM Jongwoo, and YANG Minghsuan. Online object tracking: A benchmark[C]. Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time trac-king[C]. Computer Vision and Pattern Recognition, Las Vegas, 2016: 1401-1409.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1130) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return