Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Yidan SU, Ruoyu LI, Hua QIN, Qin CHEN. Kernel Extreme Learning Machine Based on K Interpolation Simplex Method[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1860-1866. doi: 10.11999/JEIT171104
Citation: Yidan SU, Ruoyu LI, Hua QIN, Qin CHEN. Kernel Extreme Learning Machine Based on K Interpolation Simplex Method[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1860-1866. doi: 10.11999/JEIT171104

Kernel Extreme Learning Machine Based on K Interpolation Simplex Method

doi: 10.11999/JEIT171104
Funds:  The National Natural Science Foundation of China (61762009)
  • Received Date: 2017-11-24
  • Rev Recd Date: 2018-04-23
  • Available Online: 2018-06-07
  • Publish Date: 2018-08-01
  • The kernel Extreme Learning Machine (ELM) has a problem that the kernel parameter of the Gauss kernel function is hard to be optimized. As a result, training speed and classification accuracy of kernel ELM are negatively affected. To deal with that problem, a novel kernel ELM based on K interpolation simplex method is proposed. The training process of kernel ELM is considered as an unconstrained optimal problem. Then, the Nelder-Mead Simplex Method (NMSM) is used as an optimal method to search the optimized kernel parameter, which improves the classification accuracy of kernel ELM. Furthermore, the K interpolation method is used to provide appropriate initial values for the Nelder-Mead simplex to reduce the number of iterations, and as a result, the training speed of ELM is improved. Comparative results on UCI dataset demonstrate that the novel ELM algorithm has better training speed and higher classification accuracy.
  • loading
  • HUANG Guangbing, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489–501.DOI: 10.1016/j.neucom.2005.12.126.
    SALCEDO S S, CASANOVA M C, PASTOR S A, et al. Daily global solar radiation prediction based on a hybrid coral reefs optimization – extreme learning machine approach[J]. Solar Energy, 2014, 105: 91–98.DOI: 10.1016/j.solener.2014.04.009.
    SONG Yuedong and ZHANG Jiaxiang. Discriminating preictal and interictal brain states in intracranial EEG by sample entropy and extreme learning machine[J]. Journal of Neuroscience Methods, 2016, 257: 45–54.DOI: 10.1016/j.jneumeth.2015.08.026.
    SURI M and PARMAR V. Exploiting intrinsic variability of filamentary resistive memory for extreme learning machine architectures[J]. IEEE Transactions on Nanotechnology, 2015, 14(6): 963–968.DOI: 10.1109/TNANO.2015.2441112.
    DING Shifei, ZHAO Han, ZHANG Yanan, et al. Extreme learning machine: Algorithm, theory and applications[J]. Artificial Intelligence Review, 2015, 44(1): 103–115.DOI: 10.1007/s10462-013-9405-z.
    HUANG Guangbing, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513–529.DOI: 10.1109/TSMCB.2011.2168604.
    HUANG Guangbing, DING Xiaojian, and ZHOU Hongming. Optimization method based extreme learning machine for classification.[J]. Neurocomputing, 2010, 74(1): 155–163.DOI: 10.1016/j.neucom.2010.02.019.
    VAN G T, SUYKENS J A, LANCKRIET G, et al. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis[J]. Neural Computation, 2014, 14(5): 1115–1147.DOI: 10.1162/089976602753633411.
    ADANKON M M, CHERIEL M, and AYAT N F. Optimizing resources in model selection for support vector machines[J]. Pattern Recognition, 2007, 40(3): 953–963.DOI: 10.1016/j.patcog.2006.06.012.
    XU Yitian, PAN Xianli, ZHOU Zhijian, et al. Structural least square twin support vector machine for classification[J]. Applied Intelligence, 2015, 42(3): 527–536.DOI: 10.1007/s10489-014-0611-4.
    XIAO Yingchao, WANG Huangang, ZHANG Lin, et al. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection[J]. Knowledge-Based Systems, 2014, 59(2): 75–84.DOI: 10.1016/j.knosys.2014.01.020.
    XIAO Yingchao, WANG Huangang, and XU Weili. Parameter selection of gaussian kernel for one-class SVM.[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 941–953.DOI: 10.1109/TCYB.2014.2340433.
    TIAN Meng and WANG Wenjian. An efficient Gaussian kernel optimization based on centered kernel polarization criterion[J]. Information Sciences, 2015, 322: 133–149.DOI: 10.1016/j.ins.2015.06.010.
    LAGARIAS J C, WRIGHT M H, WRIGHT P E, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. SIAM Journal on Optimization, 1998, 9(1): 112–147.DOI: 10.1137/S1052623496303470.
    冯增喜, 任庆昌, 彭彦平, 等. 基于单纯形法的MFAC参数寻优[J]. 控制工程, 2016, 23(3): 405–410.DOI: 10.14107/j.cnki.kzgc.150456.

    FENG Zengxi, REN Qingchang, PENG Yanping, et al. Optimizing the parameters of MFAC based on the simplex method[J]. Control Engineering of China, 2016, 23(3): 405–410.DOI: 10.14107/j.cnki.kzgc.150456.
    郑伟博, 张纪会. 基于Nelder-Mead单纯形法的改进量子行为粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97–104.DOI: 10.13306/j.1672-3813.2016.02.012.

    ZHENG Weibo and ZHANG Jihui. A improved quantum behaved particle swarm optimization algorithm using nelder and mead’s simplex algorithm[J]. Complex Systems & Complexity Science, 2016, 13(2): 97–104.DOI: 10.13306/j.1672-3813.2016.02.012.
    KEERTHI S S and LIN C J. Asymptotic behaviors of support vector machines with gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667–1689.DOI: 10.1162/089976603321891855.
    张小云, 刘允才. 高斯核支撑向量机的性能分析[J]计算机工程, 2003, 29(8): 22–25.DOI: 10.3969/j.issn.1000-3428.2003.08.009.

    ZHANG Xiaoyun and LIU Yuncai. Performance analysis of support vector machines with Gauss kernel[J]. Computer Engineering, 2003, 29(8): 22–25.DOI: 10.3969/j.issn.1000-3428.2003.08.009.
    罗家祥, 罗丹, 胡跃明. 带权重变化和决策融合的ELM在线故障检测[J]. 控制与决策, 2017.DOI: 10.13195/j.kzyjc.2017.0274.该文献为网络优先出版, 暂时没有期卷号和页码

    LUO Jiaxiang, LUO Dan, and HU Yueming. A new online extreme learning machine with varying weights and decision level fusion for fault detection[J]. Control and Decision, 2017.DOI: 10.13195/j.kzyjc.2017.0274.
    ZHANG Yongshan, WU Jia, CAI Zhihua, et al. Memetic extreme learning machine[J]. Pattern Recognition, 2016, 58: 135–148.doi: 10.1016/j.patcog.2016.04.003.
    ZHANG Yongshan, WU Jia, Zhou Chuan, et al. Instance cloned extreme learning machine[J]. Pattern Recognition, 2017, 68: 52–65.DOI: 10.1016/j.patcog.2017.02.036.
    TANG Jiexiong, DENG Chenwei, and HUANG Guangbing. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(4): 809–821.DOI: 10.1109/TNNLS.2015.2424995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (1730) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return