Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
CHEN Zhonghui, LING Xianyao, FENG Xinxin, ZHENG Haifeng, XU Yiwen. Short-term Traffic State Prediction Approach Based on FCM and Random Forest[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1879-1886. doi: 10.11999/JEIT171090
Citation: CHEN Zhonghui, LING Xianyao, FENG Xinxin, ZHENG Haifeng, XU Yiwen. Short-term Traffic State Prediction Approach Based on FCM and Random Forest[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1879-1886. doi: 10.11999/JEIT171090

Short-term Traffic State Prediction Approach Based on FCM and Random Forest

doi: 10.11999/JEIT171090
Funds:

The National Natural Science Foundation of China (61601126, 61571129, U1405251), The Foundation of Fujian Province (2016J01299)

  • Received Date: 2017-11-20
  • Rev Recd Date: 2018-04-16
  • Publish Date: 2018-08-19
  • Traffic congestion is a problem faced by cities, and it is urgent for solving this issue. Accurate short-term traffic state prediction is benefit for citizens to know the traffic information in advance, and take the measures in time to avoid the congestion. In this paper, a short-term traffic state prediction approach is proposed based on Fuzzy C-Means (FCM) clustering and Random Forest. Firstly, a novel Adaptive Multi-kernel Support Vector Machine (AMSVM) which incorporates the spatial-temporal information is used to predict the short-term traffic parameters, including the volume, the speed and the occupancy. Secondly, the historical traffic data are analyzed based on FCM algorithm, and the historical traffic state information is got. Lastly, the Random Forest (RF) algorithm is utilized to analyze the predicted short-term traffic parameters, then the final predicted short-term traffic state is obtained. This method incorporates the spatial-temporal information as well as applying the Random Forest to a new research field of short-term traffic state prediction. The experimental results demonstrate that the evaluation method of historical traffic state based on FCM is suitable for both freeway and urban road scenarios. Besides, the Random Forest has higher prediction accuracy than other common machine learning methods, thus providing the short-term traffic information timely and reliably.
  • loading
  • KRAUSE B, ALTROCK C, and POZYBILL M. Intelligent highway by fuzzy logic: Congestion detection and traffic control on multi-lane roads with variable road signs[C]. Proceedings of the 1996 5th IEEE International Conference on Fuzzy Systems, New Orleans, USA, 1996, 3: 1832-1837.
    巫威眺, 靳文舟, 林培群. 基于BP神经网络的道路交通状态判别方法研究[J]. 交通信息与安全, 2011, 29(4): 71-74. doi: 10.3963/j.ISSN 1674-4861.2011.04.016. WU Weitiao, JIN Wenzhou, and LIN Peiqun. The method of traffic state identification based on BP Neural Network[J]. Journal of Transport Information and Safety, 2011, 29(4): 71-74. doi: 10.3963/j.ISSN1674-4861.2011.04.016.
    张亮亮, 贾元华, 牛忠海, 等. 交通状态划分的参数权重聚类方法研究[J]. 交通运输系统工程与信息, 2014, 14(6): 147-151. doi: 10.16097/j.cnki.1009-6744.2014.06.022. ZHANG Liangliang, JIA Yuanhua, NIU Zhonghai, et al. Traffic state classification based on parameter weighting and clustering method[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 147-151. doi: 10.16097/j.cnki.1009-6744.2014.06.022.
    KONG Xiangjie, XU Zhenzhen, SHEN Guojiang, et al. Urban traffic congestion estimation and prediction based on floating car trajectory data[J]. Future Generation Computer Systems, 2016, 61(C): 97-107. doi: 10.1016/j.future.2015. 11.013.
    DENG Chao, WANG Fan, SHI Huimin, et al. Real-time freeway traffic state estimation based on cluster analysis and Multiclass Support Vector Machine[C]. 2009 International Workshop on Intelligent Systems and Applications, Wuhan, China, 2009: 1-4. doi: 10.1109/IWISA.2009.5073027.
    OH S, BYON Y J, and YEO H. Improvement of search strategy with K-Nearest Neighbors approach for traffic state prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1146-1156. doi: 10.1109/TITS.2015.2498408.
    RICARDO G R, MARIA L L G, and MARIA S R. An approach to dynamical classification of daily traffic patterns [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(3): 191-212. doi: 10.1111/mice.12226.
    CHEN Yuanyuan, L Yisheng, LI Zhenjiang, et al. Long short-term memory model for traffic congestion prediction with online open data[C]. 19th IEEE International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016: 132-137. doi: 10.1109/ITSC.2016. 7795543.
    高林, 刘英, 盛子豪. 随机森林算法在交通状态判别中的应用[J]. 实验技术与管理, 2017, 34(4): 43-46. doi: 10.16791/ j.cnki.sjg.2017.04.012. GAO Lin, LIU Ying, and SHENG Zihao. Application of Random Forest algorithm to traffic state identification[J]. Experiment Technology and Management, 2017, 34(4): 43-46. doi: 10.16791/j.cnki.sjg.2017.04.012.
    冯心欣, 凌献尧, 林烨婷, 等. 可优化的自适应多核支持向量机的短时交通流预测方法[P]. 中国专利, 106971548A, 2017. FENG Xinxin, LING Xianyao, LIN Yeting, et al. Optimized adaptive Multi-kernel Support Vector Machine for short-term traffic flow prediction[P]. China Patent, 106971548A, 2017.
    LING Xianyao, FENG Xinxin, CHEN Zhonghui, et al. Short-term traffic flow prediction with optimized Multi-kernel Support Vector Machine[C]. 2017 IEEE Congress on Evolutionary Computation, Donostia-San Sebastian, Spain, 2017: 294-300. doi: 10.1109/CEC.2017. 7969326.
    ZHU Guangyu, CHEN Jianjun, and ZHANG Peng. Fuzzy C-means clustering identification method of urban road traffic state[C]. 12th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, 2015: 302-307. doi: 10.1109/FSKD.2015.7381958.
    吴启顺, 蔡晓禹, 蔡明. 基于FCM快速路交通状态判别加权指数研究[J]. 科学技术与工程, 2017, 17(6): 289-295. WU Qishun, CAI Xiaoyu, and CAI Ming. A study of weighting exponent in expressway traffic state estimation based on Fuzzy C-means[J]. Science Technology and Engineering, 2017, 17(6): 289-295.
    BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324.
    董师师, 黄哲学. 随机森林理论浅析[J]. 集成技术, 2013, 2(1): 1-7. DONG Shishi and HUANG Zhexue. A brief theoretical overview of Random Forests[J]. Journal of Integration Technology, 2013, 2(1): 1-7.
    ZHOU Zhihua and FENG Ji. Deep Forest: Towards an alternative to Deep Neural Networks[C]. 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3553-3559.
    CALTRANS PEMS. Traffic flow database[OL]. http:// pems.dot.ca.gov/?dnode=VDScontent=loopstab=dettimeseriesstation id=1017510, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1868) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return