Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
WANG Jinbo, TANG Jinsong, ZHANG Sen, ZHONG Heping. Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1575-1582. doi: 10.11999/JEIT171068
Citation: WANG Jinbo, TANG Jinsong, ZHANG Sen, ZHONG Heping. Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1575-1582. doi: 10.11999/JEIT171068

Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging

doi: 10.11999/JEIT171068
Funds:

The National Natural Science Foundation of China (61671461, 41304015)

  • Received Date: 2017-11-16
  • Rev Recd Date: 2018-04-09
  • Publish Date: 2018-07-19
  • Considering the problem of large squint synthetic aperture sonar imaging, the analytical expression of the wavenumber spectrum is analyzed in detail in the radial and azimuth wavenumber fields under the wide-band high-squint conditions. The spectrum winding and shrink in the distance wavenumber fields after the Stolt interpolation are pointed out, and the reduced relative distance between the target in the imaging result is also indicated, then the Stolt interpolation method for distance wavenumber spectrum winding is given. The concept of range wavenumber scaling factor is proposed, the method of compensating the scaling factor and the spectrum winding in the distance space are given. Finally, the problem of range scaling caused by Stolt interpolation under large oblique angle is solved by compensating the distance variable in distance space. Point object simulation data and simulated echo data processing verify the correctness and validity of the proposed method.
  • loading
  • [2] CHEN C, ZARE A, and COBB J T. Sand ripple characterization using an extended synthetic aperture sonar model and parallel sampling method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5547-5559. doi: 10.1109/TGRS.2015.2424837.
    CARBALLINI J and VIANA F. Using synthetic aperture sonar as an effective tool for pipeline inspection survey projects[C]. IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), Rio de Janeiro, Brazil, 2015: 1-5.
    [3] HANSEN R E, CALLOW H J, SABO T O, et al. Challenges in seafloor imaging and mapping with synthetic aperture sonar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3677-3687. doi: 10.1109/TGRS.2011. 2155071.
    [4] HANSEN R E, LYONS A P, TORSTEIN O S, et al. The effect of internal wave-related features on synthetic aperture sonar[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3): 621-631. doi: 10.1109/JOE.2014.2340351.
    [6] LARSEN L J, HYDROSPHERIC S, WILBY A, et al. Deep ocean survey and search using synthetic aperture sonar[C]. MTS/IEEE Oceans Conference, Seattle, USA, 2010: 1-4.
    [7] TIAN Zhen, TANG Jinsong, ZHONG Heping, et al. Extended range Doppler algorithm for multiple-receiver synthetic aperture sonar based on exact analytical two-dimensional spectrum[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 164-174. doi: 10.1109/JOE.2015. 2402053.
    [8] SAWA T, KASAYA T, NAKATSUKA K, et al. Improvement of synthetic aperture sonar with multi-channel projector[C]. MTS/IEEE OCEANS,15, Washington, USA, 2015: 1-6.
    [9] QIAO Ziliang and KRAUS D. Azimuth ambiguity in redundant sampled stripmap SAS imaging[C]. MTS/IEEE OCEANS,16, Shanghai, China, 2016: 1-5. doi: 10.3873/ j.izzn.1000-1328.2016.01.015.
    LI Jianbing, ZHANG Shuangxi, SU Daliang, et al. A squint        SAR imaging for linear range cell migration correction in Doppler domain[J]. Journal of Astronautics, 2016, 37(1): 118-126. doi: 10.383873/j.issn.1000-1328.2016.01.015.
    HOU Yuxing. Study on HRWS SAR imaging and the algorithm performance improvement[D]. [Ph.D. dissertation],  Xidian University, 2015: 31-33.
    [12] STOLT R H. Migration by fourier transform[J]. Geophysics, 1978, 43(1): 23-48.
    [13] TOLMAN M A and LONG D G. New results on the Omega-k algorithm for processing synthetic aperture radar data[C]. 2011 IEEE Radar Conference (RADAR), Kansas City, USA, 2011: 868-873. doi: 10.1109/RADAR.2011.5960661.
    [14] CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. London: Artech House, 2004: 119-226.
    [15] CALLOW H J, HAYES M P, and Gough P T. Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry[J]. Electronics Letters, 2002, 38(7): 336-338. doi: 10.1049/el:20020219.
    [16] CAFFORIO C, PRATI C, and ROCCA F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207. doi: 10.1109/7.78293.
    XING Mengdao, BAO Zheng, LI Zhenfang, et al. Progress of Radar Imaging Algorithm[M]. Beijing: Publishing House of Electronics Industry, 2014: 27-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1514) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return