Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
ZHOU Yulong, CAO Xiangyu, GAO Jun, ZHENG Yuejun, ZHANG Chen. Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854
Citation: Bowen FEI, Yunfei QIU, Wanjun LIU, Daqian LIU. Fuzzy Clustering Ensemble Model Based on Distance Decision[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1895-1903. doi: 10.11999/JEIT171065

Fuzzy Clustering Ensemble Model Based on Distance Decision

doi: 10.11999/JEIT171065
Funds:  The Young Scientists Fund of the National Natural Science Foundation of China (61401185)
  • Received Date: 2017-11-15
  • Rev Recd Date: 2018-05-09
  • Available Online: 2018-06-07
  • Publish Date: 2018-08-01
  • Fuzzy clustering is a kind of clustering algorithm which shows superior performance in recent years, however, the algorithm is sensitive to the initial cluster center and can not obtain accurate results of clustering for the boundary samples. In order to improve the accuracy and stability of clustering, this paper proposes a novel approach of fuzzy clustering ensemble model based on distance decision by combining multiple fuzzy clustering results. First of all, performing several times clustering for data samples by using FCM (Fuzzy C-Means), and corresponding membership matrices are obtained. Then, a new method of distance decision is proposed, a cumulative distance matrix is constructed by the membership matrices. Finally, the distance matrix is introduced into the Density Peaks (DP) algorithm, and the final results of clustering are obtained by using the improved DP algorithm for clustering ensemble. The results of the experiment show that the clustering ensemble model proposed in this paper is more effective than other classical clustering ensemble model on the 9 data sets in UCI machine learning database.
  • MEI Jianping, WANG Yangtao, CHEN Lihui, et al.. Large scale document categorization with fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1239–1251. DOI: 10.1109/TFUZZ.2016.2604009.
    张洁玉, 李佐勇. 基于核空间的加权邻域约束直觉模糊聚类算法[J]. 电子与信息学报, 2017, 39(9): 2162–2168. DOI: 10.11999/JEIT161317.

    ZHANG Jieyu and LI Zuoyong. Kernel-based algorithm with weighted spatial information intuitionistic fuzzy c-means[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2162–2168. DOI: 10.11999/JEIT161317.
    叶茂, 刘文芬. 基于快速地标采样的大规模谱聚类算法[J]. 电子与信息学报, 2017, 39(2): 278–284. DOI: 10.11999/JEIT160260.

    YE Mao and LIU Wenfen. Large scale spectral clustering based on fast landmark sampling[J]. Journal of Electronics & Information Technology, 2017, 39(2): 278–284. DOI: 10.11999/JEIT160260.
    周林, 平西建, 徐森, 等. 基于谱聚类的聚类集成算法[J]. 自动化学报, 2012, 38(8): 1335–1342. DOI: 10.3724/SP.J.1004.2012.01335.

    ZHOU Lin, PING Xijian, XU Sen, et al.. Cluster ensemble based on spectral clustering[J]. Acta Automatica Sinica, 2012, 38(8): 1335–1342. DOI: 10.3724/SP.J.1004.2012.01335.
    张敏, 于剑. 基于划分的模糊聚类算法[J]. 软件学报, 2004, 15(6): 858–868. DOI: 10.13328/j.cnki.jos.2004.06.008.

    ZHANG Min and YU Jian. Fuzzy partitional clustering algorithms[J]. Journal of Software, 2004, 15(6): 858–868. DOI: 10.13328/j.cnki.jos.2004.06.008.
    BEZDEK J C, HATHAWAY R J, SABIN M J, et al.. Convergence theory for fuzzy c-means: Counter-examples and repairs[J]. IEEE Transaction on Systems, Man, and Cybernetics, 1987, 17(5): 873–877. DOI: 10.1109/TSMC.1987.6499296.
    STREHL A and GHOSH J. Cluster ensembles a knowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3(3): 583–617. DOI: 10.1162/153244303321897735.
    GOSWAMI J P and MAHANTA A K. A genetic algorithm based ensemble approach for categorical data clustering[C]. Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 2015: 1–6.
    BANERJEE B, BOVOLO F, BHATTACHARYA A, et al.. A new self-training-based unsupervised satellite image classification technique using cluster ensemble strategy[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 741–745. DOI: 10.1109/LGRS.2014.2360833.
    HAO Zhifeng, WANG Lijuan, CAI Ruichu, et al.. An improved clustering ensemble method based link analysis[J]. World Wide Web, 2015, 18(2): 185–195. DOI: 10.1007/s11280-013-0208-6.
    ZHONG Caiming, YUE Xiaodong, ZHANG Zehua, et al.. A clustering ensemble: two-level-refined co-association matrix with path-based transformation[J]. Pattern Recognition, 2015, 48(8): 2699–2709. DOI: 10.1016/j.patcog.2015.02.014.
    褚睿鸿, 王红军, 杨燕, 等. 基于密度峰值的聚类集成[J]. 自动化学报, 2016, 42(9): 1401–1412. DOI: 10.16383/j.aas.2016.c150864.

    CHU Ruihong, WANG Hongjun, YANG Yan, et al.. Clustering ensemble based on density peaks[J]. Acta Automatica Sinica, 2016, 42(9): 1401–1412. DOI: 10.16383/j.aas.2016.c150864.
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. DOI: 10.1126/science.1242072.
    ZHOU Zhihua and TANG Wei. Clusterer ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77–83. DOI: 10.1016/j.knosys.2005.11.003.
    GAN Guojun, YANG Zijiang, and WU Jianhong. A genetic K-modes algorithm for clustering categorical data[J]. Springer Berlin Heidelberg, 2005, 36(2): 728–728. DOI: 10.1007/11527503_23.
  • Cited by

    Periodical cited type(6)

    1. 王凤随 ,闫涛 ,刘芙蓉 ,钱亚萍 ,许月 . 融合子空间共享特征的多尺度跨模态行人重识别方法. 电子与信息学报. 2023(01): 325-334 . 本站查看
    2. 王晓红,李超奇,卢辉. 基于可见光-红外模态下双向特征生成的行人重识别方法. 光学技术. 2022(03): 372-378 .
    3. 张佳琦,张金艺,楼亮亮. 基于分组特征赋权的动态视角图像特征融合. 电子测量技术. 2021(04): 144-148 .
    4. 吴普民,赵晋扬,陈德浪,王喆. 视频结构化技术在公安实战中的深度应用. 警察技术. 2020(04): 68-71 .
    5. 王粉花,赵波,黄超,严由齐. 基于多尺度和注意力融合学习的行人重识别. 电子与信息学报. 2020(12): 3045-3052 . 本站查看
    6. 陈莹,陈巧媛. 引入语义部位约束的行人再识别. 电子与信息学报. 2020(12): 3037-3044 . 本站查看

    Other cited types(10)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (2310) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return