Advanced Search
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Hao HE, Weidong YI, Yongrui CHEN, Zhe WANG. WSN Timer Resolution Adjustment Based on UKF Approach[J]. Journal of Electronics & Information Technology, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049
Citation: Hao HE, Weidong YI, Yongrui CHEN, Zhe WANG. WSN Timer Resolution Adjustment Based on UKF Approach[J]. Journal of Electronics & Information Technology, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049

WSN Timer Resolution Adjustment Based on UKF Approach

doi: 10.11999/JEIT171049
Funds:  The National Science and Technology Support Program (Y2140161A5), The National 863 Program of China (O812041A04)
  • Received Date: 2017-11-13
  • Rev Recd Date: 2018-12-19
  • Available Online: 2018-12-24
  • Publish Date: 2019-03-01
  • During the radio-off periods of  Wireless Sensor Network (WSN) node, the timer Interrupt ReQuest (IRQ) which used to maintain the system clock become an important energy consumption source of Micro Controller Unit (MCU), thus the IRQ frequency has a great influence on WSN node total energy consumption. A timer resolution adjustment method based on Unscented Kalman Filter (UKF) approach is proposed, which switches high and low IRQ frequencies according to the characteristics of the protocol. Being at a low frequency during sleep period, if a node needs to switch to wake-up period, it will first obtain the optimal estimation of the start time of high resolution timing period by UKF, then enter the high resolution timing period after a linear combination of a group of gradual-changing resolution timer IRQ. The simulations of ContikiMAC protocol on the Tmote platform are conducted. When the Radio Duty Cycle (RDC) is 0.53%, the proposed method reduces the total power consumption by 28.85% compared to the original protocol.

  • loading
  • DJIROUN F Z and DJENOURI D. MAC protocols with wake-up radio for wireless sensor networks: A review[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 587–618. doi: 10.1109/COMST.2016.2612644
    OLLER J, DEMIRKOL I, CASADEMONT J, et al. Has time come to switch from duty-cycled mac protocols to wake-up radio for wireless sensor networks?[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 674–687. doi: 10.1109/TNET.2014.2387314
    DUQUENNOY S, ELSTS A, NAHAS B A, et al. TSCH and 6TiSCH for Contiki: Challenges, design and evaluation[C]. International Conference on Distributed Computing in Sensor Systems, New York, USA, 2018: 11–18.
    PANTAZIS N A and VERGADOS D D. A survey on power control issues in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2007, 9(4): 86–107. doi: 10.1109/COMST.2007.4444752
    ZHURAVLEV S, SAEZ J C, BLAGODUROV S, et al. Survey of energy-cognizant scheduling techniques[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(7): 1447–1464. doi: 10.1109/TPDS.2012.20
    AKRAM S, SARTOR J B, and EECKHOUT L. DVFS performance prediction for managed multithreaded applications[C]. IEEE International Symposium on PERFORMANCE Analysis of Systems and Software, Uppsala, Sweden, 2016: 12–23.
    VARTZIOTIS F, KAVOUSIANOS X, CHAKRABARTY K, et al. Time-division multiplexing for testing DVFS-based SoCs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(4): 668–681. doi: 10.1109/TCAD.2015.2394462
    LI Xin and LIU Qiang. Multi-time-segment dynamic power management for environmentally embedded systems[J]. Journal of Xian Jiaotong University, 2017, 51(1): 147–152. doi: 10.7652/xjtuxb201701023
    GUTNIK V and CHANDRAKASAN A P. Embedded power supply for low-power DSP[J]. IEEE Transactions on Very Large Scale Integration Systems, 1997, 5(4): 425–435. doi: 10.1109/92.645069
    CHEN Yongrui, YI Weidong, SUN Hao, et al. Tunable time resolution: An energy saving mechanism for wireless sensor networks[J]. IEEE Communications Letters, 2015, 19(7): 1201–1204. doi: 10.1109/LCOMM.2015.2430858
    YAN Yan, OSWALD E, and TRYFONAS T. Cryptographic randomness on a CC2538: A case study[C]. IEEE International Workshop on Information Forensics and Security, Rennes, France, 2016: 1–6.
    ZHENG Kan, WANG Huijian, LI Hang, et al. Energy-efficient localization and tracking of mobile devices in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2714–2726. doi: 10.1109/TVT.2016.2584104
    WU Yafeng, LIU K S, STANKOVIC J A, et al. Efficient multichannel communications in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2016, 12(1): 1–23. doi: 10.1145/2840808
    DUNKELS A, GRONVALL B, and VOIGT T. Contiki — A lightweight and flexible operating system for tiny networked sensors[C]. IEEE International Conference on Local Computer Networks, Tampa, USA, 2004: 455–462.
    RAZA S, MISRA P, HE Zhitao, et al. Building the internet of things with bluetooth smart[J]. Ad Hoc Networks, 2017, 57: 19–31. doi: 10.1016/j.adhoc.2016.08.012
    WANG Gang, CHEN Hongyang, LI Youming, et al. On received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Communications Letters, 2012, 1(5): 536–539. doi: 10.1109/WCL.2012.072012.120428
    WANG Jie, GAO Qinghua, WANG Hongyu, et al. Robust tracking algorithm for wireless sensor networks based on improved particle filter[J]. Wireless Communications & Mobile Computing, 2012, 12(10): 891–900. doi: 10.1002/wcm.1024
    CHEN Hongyang, GAO Feifei, MARTINA M, et al. Accurate and efficient node localization for mobile sensor networks[J]. Mobile Networks & Applications, 2013, 18(1): 141–147. doi: 10.1007/s11036-012-0361-7
    CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks & Applications, 2012, 17(1): 90–99. doi: 10.1007/s11036-010-0281-3
    CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
    CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
    CHEN Hongyang and SEZAKI K. Distributed target tracking algorithm for wireless sensor networks[C]. IEEE International Conference on Communications, Kyoto, Japan, 2011: 1–5.
    EMAMI K, FERNANDO T, IU H C, et al. Application of unscented transform in frequency control of a complex power system using noisy PMU data[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 853–863. doi: 10.1109/TII.2015.2491222
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1553) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return