Citation: | Hao HE, Weidong YI, Yongrui CHEN, Zhe WANG. WSN Timer Resolution Adjustment Based on UKF Approach[J]. Journal of Electronics & Information Technology, 2019, 41(3): 687-693. doi: 10.11999/JEIT171049 |
During the radio-off periods of Wireless Sensor Network (WSN) node, the timer Interrupt ReQuest (IRQ) which used to maintain the system clock become an important energy consumption source of Micro Controller Unit (MCU), thus the IRQ frequency has a great influence on WSN node total energy consumption. A timer resolution adjustment method based on Unscented Kalman Filter (UKF) approach is proposed, which switches high and low IRQ frequencies according to the characteristics of the protocol. Being at a low frequency during sleep period, if a node needs to switch to wake-up period, it will first obtain the optimal estimation of the start time of high resolution timing period by UKF, then enter the high resolution timing period after a linear combination of a group of gradual-changing resolution timer IRQ. The simulations of ContikiMAC protocol on the Tmote platform are conducted. When the Radio Duty Cycle (RDC) is 0.53%, the proposed method reduces the total power consumption by 28.85% compared to the original protocol.
DJIROUN F Z and DJENOURI D. MAC protocols with wake-up radio for wireless sensor networks: A review[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 587–618. doi: 10.1109/COMST.2016.2612644
|
OLLER J, DEMIRKOL I, CASADEMONT J, et al. Has time come to switch from duty-cycled mac protocols to wake-up radio for wireless sensor networks?[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 674–687. doi: 10.1109/TNET.2014.2387314
|
DUQUENNOY S, ELSTS A, NAHAS B A, et al. TSCH and 6TiSCH for Contiki: Challenges, design and evaluation[C]. International Conference on Distributed Computing in Sensor Systems, New York, USA, 2018: 11–18.
|
PANTAZIS N A and VERGADOS D D. A survey on power control issues in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2007, 9(4): 86–107. doi: 10.1109/COMST.2007.4444752
|
ZHURAVLEV S, SAEZ J C, BLAGODUROV S, et al. Survey of energy-cognizant scheduling techniques[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(7): 1447–1464. doi: 10.1109/TPDS.2012.20
|
AKRAM S, SARTOR J B, and EECKHOUT L. DVFS performance prediction for managed multithreaded applications[C]. IEEE International Symposium on PERFORMANCE Analysis of Systems and Software, Uppsala, Sweden, 2016: 12–23.
|
VARTZIOTIS F, KAVOUSIANOS X, CHAKRABARTY K, et al. Time-division multiplexing for testing DVFS-based SoCs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(4): 668–681. doi: 10.1109/TCAD.2015.2394462
|
LI Xin and LIU Qiang. Multi-time-segment dynamic power management for environmentally embedded systems[J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 147–152. doi: 10.7652/xjtuxb201701023
|
GUTNIK V and CHANDRAKASAN A P. Embedded power supply for low-power DSP[J]. IEEE Transactions on Very Large Scale Integration Systems, 1997, 5(4): 425–435. doi: 10.1109/92.645069
|
CHEN Yongrui, YI Weidong, SUN Hao, et al. Tunable time resolution: An energy saving mechanism for wireless sensor networks[J]. IEEE Communications Letters, 2015, 19(7): 1201–1204. doi: 10.1109/LCOMM.2015.2430858
|
YAN Yan, OSWALD E, and TRYFONAS T. Cryptographic randomness on a CC2538: A case study[C]. IEEE International Workshop on Information Forensics and Security, Rennes, France, 2016: 1–6.
|
ZHENG Kan, WANG Huijian, LI Hang, et al. Energy-efficient localization and tracking of mobile devices in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2714–2726. doi: 10.1109/TVT.2016.2584104
|
WU Yafeng, LIU K S, STANKOVIC J A, et al. Efficient multichannel communications in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2016, 12(1): 1–23. doi: 10.1145/2840808
|
DUNKELS A, GRONVALL B, and VOIGT T. Contiki — A lightweight and flexible operating system for tiny networked sensors[C]. IEEE International Conference on Local Computer Networks, Tampa, USA, 2004: 455–462.
|
RAZA S, MISRA P, HE Zhitao, et al. Building the internet of things with bluetooth smart[J]. Ad Hoc Networks, 2017, 57: 19–31. doi: 10.1016/j.adhoc.2016.08.012
|
WANG Gang, CHEN Hongyang, LI Youming, et al. On received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Communications Letters, 2012, 1(5): 536–539. doi: 10.1109/WCL.2012.072012.120428
|
WANG Jie, GAO Qinghua, WANG Hongyu, et al. Robust tracking algorithm for wireless sensor networks based on improved particle filter[J]. Wireless Communications & Mobile Computing, 2012, 12(10): 891–900. doi: 10.1002/wcm.1024
|
CHEN Hongyang, GAO Feifei, MARTINA M, et al. Accurate and efficient node localization for mobile sensor networks[J]. Mobile Networks & Applications, 2013, 18(1): 141–147. doi: 10.1007/s11036-012-0361-7
|
CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks & Applications, 2012, 17(1): 90–99. doi: 10.1007/s11036-010-0281-3
|
CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
|
CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
|
CHEN Hongyang and SEZAKI K. Distributed target tracking algorithm for wireless sensor networks[C]. IEEE International Conference on Communications, Kyoto, Japan, 2011: 1–5.
|
EMAMI K, FERNANDO T, IU H C, et al. Application of unscented transform in frequency control of a complex power system using noisy PMU data[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 853–863. doi: 10.1109/TII.2015.2491222
|