Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Yilin WANG, Shilong MA, Jinjin WANG, Guolong LIANG, Qing LI. Estimation of Unknown Line Spectrum under Colored Noise via Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2570-2577. doi: 10.11999/JEIT171040
Citation: Yilin WANG, Shilong MA, Jinjin WANG, Guolong LIANG, Qing LI. Estimation of Unknown Line Spectrum under Colored Noise via Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2570-2577. doi: 10.11999/JEIT171040

Estimation of Unknown Line Spectrum under Colored Noise via Sparse Reconstruction

doi: 10.11999/JEIT171040
Funds:  The National Natural Science Foundation of China (11504064), The Postdoctoral Scientific Research Foundation of Heilongjiang Province (LBH-Q15025), The Science Foundation for the Returned Overseas Scholars of Heilongjiang Province (JJ2016LX0051)
  • Received Date: 2017-11-03
  • Rev Recd Date: 2018-09-03
  • Available Online: 2018-09-07
  • Publish Date: 2018-11-01
  • To solve the problem of the line spectrum estimation under colored noise background, a subband line spectrum estimation method using sparse reconstruction is proposed. Firstly, the input signal is divided into several subbands by a multi-rate cosine modulated filter bank. The subband signal has the flatter power spectrum. The sparse learning via iterative minimization method is utilized on each subband to estimate the line spectrum signal. Then, the results of line spectrum estimation on each subband are processed by frequency domain synthesis filtering and threshold decision. Finally, the line spectrum signal under colored noise background is identified. Theoretical derivation and simulation experiments show that the proposed method has better line spectrum estimation performance under colored noise background. The colored noise background can be removed, and the advantage of high frequency resolution of sparse reconstruction method is retained.
  • loading
  • WITTEKIND D K. A simple model for the underwater noise source level of ships[J]. Journal of Ship Production&Design, 2014, 30(1): 7–14 doi: 10.5957/JSPD.30.1.120052
    JANSEN E and JONG C D. Experimental assessment of underwater acoustic source levels of different ship types[J]. IEEE Journal of Oceanic Engineering, 2017, 42(2): 1–10 doi: 10.1109/JOE.2016.2644123
    ROSENLICHT M. Introduction to Spectral Analysis[M]. New York: Dover Publications, 2005: 315–359.
    吴国清, 李靖, 陈耀明, 等. 舰船噪声识别(Ⅰ)—总体框架、线谱分析和提取[J]. 声学学报, 1998, 23(5): 394–400 doi: 10.15949/j.cnki.0371-0025.1998.05.002

    WU Guoqing, LI Jing, CHEN Yaoming, et al. Ship radiated-noise recognition(I) the overall frameword, analysis and extraction of line-spectrum[J]. Acta Acustica, 1998, 23(5): 394–400 doi: 10.15949/j.cnki.0371-0025.1998.05.002
    CHEN Zhaofu, LI Jian, TAN Xing, et al. On probing waveforms and adaptive receivers for active sonar[J]. OCEANS 2010 MTS/IEEE SEATTLE,Seattle USA, 2010: 1–10 doi: 10.1109/OCEANS.2010.5663834
    STOICA P, BABU P, and LI Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35–47 doi: 10.1109/TSP.2010.2086452
    TAN Xing, ROBERTS W, LI Jian, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088–1101 doi: 10.1109/TSP.2010.2096218
    FLORESCU A and CIOCHINA S. Refining accuracy of the spectral lines estimation by a sparsity based approach[C]. Proceedings of 9th International Conference on Communications, Bucharest, 2012: 47–50.
    沈志博, 董春曦, 黄龙, 等. 一种基于稀疏分解的窄带信号频率估计算法[J]. 电子与信息学报, 2015, 37(4): 907–912 doi: 10.11999/JEIT140878

    SHEN Zhibo, DONG Chunxi, HUANG Long, et al. A frequency estimation algorithm of narrow-band signal based on sparse decomposition[J]. Journal of Electronics&Information Technology, 2015, 37(4): 907–912 doi: 10.11999/JEIT140878
    YANG Zai and XIE Lihua. Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 995–1006 doi: 10.1109/TSP.2015.2493987
    TKACENKO A and VAIDYANATHAN P P. The role of filter banks in sinusoidal frequency estimation[J]. Journal of the Franklin Institute, 2001, 338(5): 517–547 doi: 10.1016/S0016-0032(01)00025-4
    UDREA R M, VIZIREANU N, CIOCHINA S, et al. Nonlinear spectral subtraction method for colored noise reduction using multi-band bark scale[J]. Signal Processing, 2008, 88(5): 1299–1303 doi: 10.1016/j.sigpro.2007.11.023
    GORDANA J D. Multirate Systems: Design and Applications[M]. Hershey, USA: Idea Group Inc., 2002: 3385–3388.
    LIU Hongying, YI Caixia, and YANG Zhiming. Design perfect reconstruction cosine-modulated filter banks via quadratically constrained quadratic programming and least squares optimization[J]. Signal Processing, 2017, 141(3): 199–203 doi: 10.1016/j.sigpro.2017.06.009
    PREMA C S and DASGUPTA K S. An iterative design with variable step prototype filter for cosine modulated filter bank[J]. Radioengineering, 2016, 25(1): 156–160 doi: 10.13164/re.2016.0156
    蒋俊正, 江庆, 欧阳缮. 一种设计近似完全重构非均匀余弦调制滤波器组的新算法[J]. 电子与信息学报, 2016, 38(9): 2385–2390 doi: 10.11999/JEIT151260

    JIANG Junzheng, JIANG Qing, and OUYANG Shan. Novel method for designing near-perfect-reconstruction nonuniform cosine modulated filter banks[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2385–2390 doi: 10.11999/JEIT151260
    李忠佳, 葛临东. 基于DCT-IV的余弦调制信道化技术[J]. 信息工程大学学报, 2009, 10(4): 498–501 doi: 10.3969/j.issn.1671-0673.2009.04.017

    LI Zhongjia and GE Lindong. Cosine modulated channelization based on DCT-IV[J]. Journal of Information Engineering University, 2009, 10(4): 498–501 doi: 10.3969/j.issn.1671-0673.2009.04.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1981) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return