Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
HAN Shunan, ZHANG Min, LI Xinhao. A Blind Identification Method of Self-synchronous Scramblers Based on Optimization of Established Cost Function[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1971-1977. doi: 10.11999/JEIT171026
Citation: HAN Shunan, ZHANG Min, LI Xinhao. A Blind Identification Method of Self-synchronous Scramblers Based on Optimization of Established Cost Function[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1971-1977. doi: 10.11999/JEIT171026

A Blind Identification Method of Self-synchronous Scramblers Based on Optimization of Established Cost Function

doi: 10.11999/JEIT171026
Funds:

The National Natural Science Foundation of China (61602491)

  • Received Date: 2017-11-02
  • Rev Recd Date: 2018-03-23
  • Publish Date: 2018-08-19
  • Since the probability bias between 0 and 1 bit in a convolutional code sequence is very small, the existing method based on the probability bias in the input sequence is ineffective for the identification of a self-synchronous scrambler placed after a convolutional encoder. To solve this problem, a novel method for the blind identification of a self-synchronous scrambler is proposed. First, the scrambled convolutional code sequence is divided into blocks, and a new bit sequence is generated, in which each bit is the dot product of a scrambled bit block with a parity check vector of the convolutional code. Second, based on the criteria of maximizing the probability that the linear equations in the generated bits hold, the cost function of the feedback polynomial coefficients of the self-synchronous scrambler is established using the soft decision sequence, which is the output of the demodulator. Third, according to the characteristic of the number of terms in the feedback polynomial, the dynamic fireworks algorithm is modified by constraining the values of elements in fireworks, and the cost function is optimized using the modified dynamic fireworks algorithm. Simulation experiments show the effectiveness of the proposed algorithm. There is no need to search for the feedback polynomial exhaustively in the proposed algorithm. It is robust to the noise and the number of data required is small. Moreover, along with the increase of the number of received data or the decrease of the order of the feedback polynomial, the correct identification ratio of the proposed method increases.
  • loading
  • 李相迎. CCSDS数据链路层协议识别关键技术研究[D]. [博士论文], 中国科学院空间科学与应用研究中心, 2011: 21-23. LI Xiangying. Key technologies of protocol identification for CCSDS data link layer[D]. [Ph.D. dissertation], Center for Space Science and Applied Research Chinese Academy of Sciences, 2011: 21-23.
    SUN Yongwei, ZHANG Limin, and MA Yu. Reconstruction of linear scrambler with block data[J]. Applied Mechanics and Materials, 2015, 701(5): 114-118. doi: 10.4028/AMM.701-702. 114.
    张永光, 楼才义. 信道编码及其识别分析[M]. 北京: 电子工业出版社, 2010: 6-7. ZHANG Yongguang and LOU Caiyi. Channel Encoder and Identification Analysis[M]. Beijing: Publishing House of Electronics Industry, 2010: 6-7.
    马钰, 张立民. 基于实时检测的扰码重建算法[J]. 电子与信息学报, 2016, 38(7): 1794-1799. doi: 10.11999/JEIT151068. MA Yu and ZANG Limin. Reconstruction of scrambler with real-time test[J]. Journal of Electronics Information Technology, 2016, 38(7): 1794-1799. doi: 10.11999/JEIT 151068.
    杨忠立, 刘玉君. 自同步扰乱序列的综合算法研究[J]. 信息技术, 2005, 5(2): 30-32. doi: 10.13274/j.cnki.hdzj.2005.02.011. YANG Zhongli and LIU Yujun. Algorithm research of self- synchronizing scrambler sequence[J]. Information Technology, 2005, 5(2): 30-32. doi: 10.13274/j.cnki.hdzj.2005. 02.011.
    吕喜在, 苏绍璟, 黄芝平. 一种新的自同步扰码多项式盲恢复方法[J]. 兵工学报, 2011, 32(6): 680-685. L Xizai, SU Shaojing, and HUANG Zhiping. A novel blind recovery method of self-synchronizing scrambling polynomial [J]. Acta Armentarii, 2011, 32(6): 680-685.
    黄芝平, 周靖, 苏绍璟, 等. 基于游程统计的自同步扰码多项式阶数估计[J]. 电子科技大学学报, 2013, 42(4): 541-545. doi: 10.3969/j.issn.1001-0548.2013.04.002. HUANG Zhiping, ZHOU Jing, SU Shaojing, et al. Order estimation of self-synchronizing scrambling polynomial based on run statistic[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 541-545. doi: 10.3969 /j.issn.1001-0548.2013.04.002.
    廖红舒, 袁叶, 甘露. 自同步扰码的盲识别方法[J]. 通信学报, 2013, 34(1): 136-143. doi: 10.3969/j.issn.1000-436x.2013.01. 016. LIAO Hongshu, YUAN Ye, and GAN Lu. Novel blind recognition method for self-synchronized scrambler[J]. Journal on Communications, 2013, 34(1): 136-143. doi: 10.3969/j.issn.1000-436x.2013.01.016.
    CLUZEAU M. Reconstruction of a linear scrambler[J]. IEEE Transactions on Computers, 2007, 56(9): 1283-1291.
    陈泽亮, 彭华, 巩克现, 等. 基于软信息的扰码盲识别方法[J]. 通信学报, 2017, 38(3): 174-182. doi: 10.11959/j.issn.1000- 436x.2017043. CHEN Zeliang, PENG Hua, GONG Kexian, et al. Scrambler blind recognition method based on soft information[J]. Journal on Communications, 2017, 38(3): 174-182. doi: 10.11959/j.issn.1000-436x.2017043.
    马钰, 张立民, 王好同. 编码加扰序列的帧同步盲识别[J]. 电子学报, 2016, 44(9): 2087-2092. doi: 10.3969/j.issn.0372-2112. 2016.09.010. MA Yu, ZHANG Limin, and WANG Haotong. Blind identification of frame synchronization in scrambled code sequence[J]. Acta Electronic Sinica, 2016, 44(9): 2087-2092. doi: 10.3969/j.issn.0372-2112.2016.09.010.
    LIU Xiaobei, KOH S N, CHUI C C, et al. A study on reconstruction of linear scrambler using dual words of channel encoder[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(3): 542-552. doi: 10.1109/ TIFS.2013.2246515.
    MA Yu, ZHANG Limin, and WANG Haotong. Reconstructing synchronous scrambler with robust detection capability in the presence of noise[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 397-408. doi: 10.1109/TIFS.2014.2378143.
    LI Xinhao, ZHANG Min, HAN Shunan, et al. Distinction of self-synchronous scrambled linear block codes based on multi-fractal spectrum[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 968-978. doi: 10.21629/JSEE. 2016.05.04.
    张旻, 吕全通, 朱宇轩. 基于线性分组码的自同步扰码盲识别[J]. 应用科学学报, 2015, 33(2): 178-186. doi: 10.3969/j.issn. 0255-8297.2015.02.007. ZHANG Min, L Quantong, and ZHU Yuxuan. Blind recognition of self-synchronized scrambler based on linear block code[J]. Journal of Applied Sciences, 2015, 33(2): 178-186. doi: 10.3969/j.issn.0255-8297.2015.02.007.
    吕全通, 张旻, 李歆昊, 等. 基于码重分布距离的自同步扰码识别方法[J]. 探测与控制学报, 2015, 37(5): 7-13. L Quantong, ZHANG Min, LI Xinhao, et al. Self- synchronized scrambler recognition based on code weight distributing distance[J]. Journal of Detection Control, 2015, 37(5): 7-13.
    HUANG Li, CHEN Wengu, CHEN Enhong, et al. Blind recognition of k/n rate convolutional encoders from noisy observation[J]. Journal of Systems Engineering and Electronics, 2017, 28(2): 235-243. doi: 10.21629/JSEE.2017. 02.04.
    SOTEH A G and BIZAKI H K. On the analytical solution of rank problem in the convolutional code identification context [J]. IEEE Communications Letters, 2016, 20(3): 442-445. doi: 10.1109/LCOMM.2016.2519519.
    HAGENAUER J, OFFER E, and PAPKE J. Iterative decoding of binary block and convolutional codes[J]. IEEE Transctions on Information Theory, 1996, 42(2): 429-445.
    YU Peidong, LI Jing, and PENG Hua. A least square method for parameter estimation of RSC sub-codes of turbo codes[J]. IEEE Communications Letters, 2014, 18(4): 644-647. doi: 10.1109/LCOMM.2014.022514.140086.
    刘骏, 李静, 于沛东. 一种Turbo码随机交织器的迭代估计方法[J]. 通信学报. 2015, 36(6): 1401-1406. doi: 10.11959/j.issn. 1000-436x.2015140. LIU Jun, LI Jing, and YU Peidong. Iterative estimation method for random interleaver of Turbo codes[J]. Journal on Communications, 2015, 36(6): 1401-1406. doi: 10.11959/ j.issn.1000-436x.2015140.
    刘杰, 张立民, 钟兆根, 等. 一种软判决下的本原BCH码盲识别方法[J]. 西安交通大学学报, 2017, 51(6): 59-65. doi: 10.7652/xjtuxb201706010. LIU Jie, ZHANG Limin, ZHONG Zhaogen, et al. A blind recognition method for primitive BCH codes in soft decision situations[J]. Journal of Xian Jiaotong University, 2017, 51(6): 59-65. doi: 10.7652/xjtuxb201706010.
    ZHENG Shaoqiu, JANECEK A, LI Junzhi, et al. Dynamic search in fireworks algorithm[C]. IEEE Congress on Evolutionary Computation, Beijing, China, 2014: 3222-3229. doi: 10.1109/CEC.2014.6900485.
    TAN Ying and ZHU Yuanchun. Fireworks algorithm for optimization[C]. International Conference in Swarm Intelligence, Berlin, Germany, 2010: 355-364. doi: 10.1007/ 978-3-642-13495-1-44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1307) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return