Citation: | XU Hong, YUAN Huadong, XIE Wenchong, LIU Weijian, WANG Yongliang. Variational Bayesian-interacting Multiple Model Tracking Filter with Angle Glint Noise[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1583-1590. doi: 10.11999/JEIT171025 |
[2] HEWER G A, MARTIN R D, and ZEH J. Robust preprocessing for Kalman filtering of glint noise[J]. IEEE Tranactions on Aerospace and Electronic Systems, 1987, 23(1): 120-128. doi: 10.1109/TAES.1987.313340.
|
SKOLNIK M. Radar Handbook(Third Edition)[M]. U.S., McGraw Hill Press, 2008: 377-368.
|
[3] WU Wengrong. Target racking with glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 174-185. doi: 10.1109/7.249123.
|
[4] DAEIPOUR E and BAR-SHALOM Y. IMM tracking of maneuvering targets in the presence of glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 996-1003. doi: 10.1109/7.705913.
|
LU Cheng, LI Wei, LI Xiangping, et al. Research on target tracking in angular glint noise condition based on improved EKPF algorithm[J]. Tactical Missile Technology, 2017, (2): 81-85. doi: 10.16358/j.issn.1009-1300.2017.02.14.
|
ZHANG Xueying, CAI Zongping, and WEI Hao. Target tracking based on cubature particle filter algorithm in glint noise environment[J]. Science Technology and Engineering, 2016, (29): 271-274. doi: 10.3969/j.issn.1671-1815.2016.29. 047.
|
[7] LI Hongwei and WANG Jun. Particle filter for manoeuvring target tracking via passive radar measurements with glint noise[J]. IET Radar, Sonar and Navigation, 2012, 6(3): 180-189. doi: 10.1049/iet-rsn.2011.0075.
|
[8] KIM J, TANDALE M, MENON P K, et al. Particle filter for ballistic target tracking with glint noise[J]. Journal of Guidance Control and Dynamics, 2010, 33(6): 1918-1921. doi: 10.2514/1.51000.
|
[9] BILIK I and TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 246-262. doi: 10.1109/TAES. 2010.5417160.
|
[10] WANG Hongjian and LI Cun. An improved Gaussian mixture CKF algorithm under non-Gaussian observation noise[J]. Discrete Dynamics in Nature and Society, 2016(12): 1-10. doi: 10.1155/2016/1082837.
|
WANG Lei, CHENG Xianghong, and LI Shuangxi. Gaussian sum high order Unscented Kalman filtering algorithm[J]. Acta Electronica Sinica, 2017, 45(2): 424-430. 10.3969/j.issn. 0372-2112.2017.02.022.
|
HUANG Binke, WANG Gang, and WANG Wenbing. General proof of observation distance independence of the far-zone angular glint of radar targets[J]. Systems Engineering and Electronics, 2007, 29(4): 505-508. doi: 10.3321/j.issn:1001- 506X.2007.04.002.
|
[14] BISHOP C M. Pattern Recognition and Machine Learning [M]. New York, Springer, 2006: 423-517.
|
[15] TZIKAS D G, LIKAS C L, and GALATSANOS N P. The variational approximation for bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146. doi: 10.1109/MSP.2008.929620.
|
[16] BLEI D M, KUCUKELBIR A, and MCAULIFFE J D. Variational inference: A review for statisticians[J]. Journal of The American Statistical Association, 2017, 112(518): 859-877. doi: 10.1080/01621459.2017.1285773.
|
[17] ZHU Hao, LEUNG H, and HE Zhongshi. State estimation in unknown non-Gaussian measurement noise using variational bayesian technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(49): 2601-2614. doi: 10.1109/ TAES.2013.6621839.
|
[18] SARKKA S and NUMMENMAA A. Recursive noise adaptive kalman filtering by variational bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. doi: 10.1109/TAC.2008.2008348.
|
SHEN Chen, Xu Dingjie, SHEN Feng, et al. Generalized noises adaptive kalman filtering based on variational inference[J]. Systems Engineering and Electronics, 2014, 36(8): 1466-1472. doi: 10.3969/j.issn.1001-506X.2014.08.03.
|
[20] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601. doi: 10.1109/TAC.2017.2730480.
|
[21] ARDESHIRI T, ÖZKAN E, ORGUNER U, et al. Approximate bayesian smoothing with unknown process and measurement noise covariances[J]. IEEE Signal Processing Letters, 2015, 22(12): 2450-2454. doi: 10.1109/LSP.2015. 2490543.
|
[22] MA Tianli, WANG Xinmin, XIE Rong, et al. Variational bayesian cubature kalman filter for bearing-only tracking in glint noise environment[C]. IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 2016: 232-237.
|
[23] MIAO Zhiyong, LÜ Yunlong, XU Dingjie, et al. Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions[J]. Gps Solutions, 2017, 21(1): 111-122. doi: 10.1007/s10291-015-0510-0.
|
[24] DONG Peng, JING Zhongliang, LEUNG H, et al. Variational bayesian adaptive Cubature information filter based on Wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11): 6051-6057. doi: 10.1109/TAC.2017. 2704442.
|
[25] BORDEN B H and MUMFORD M L. A statistical glint/radar cross section target model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(5): 781-785. doi: 10.1109/TAES.1983.309383.
|
[26] ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800.
|
[27] AGAMENNONI G, NIETO J I, and NEBOT E M. Approximate inference in state-space models with heavy- tailed noise[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5024-5037. doi: 10.1109/TSP.2012.2208106.
|
[28] LI Tiancheng, BOLIC M, and DJURIC P. Resampling methods for particle filtering: Classification implementation and strategies[J]. IEEE Signal Processing Magazine, 2015, 32(3): 70-86. doi: 10.1109/MSP.2014.2330626.
|