Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
LIU Wei, WEI Zhigang, DU Wei, CAO Guangyi, WANG Wei. Fault-tolerant Last Level Cache Architecture Design at Near-threshold Voltage[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1759-1766. doi: 10.11999/JEIT170989
Citation: LIU Wei, WEI Zhigang, DU Wei, CAO Guangyi, WANG Wei. Fault-tolerant Last Level Cache Architecture Design at Near-threshold Voltage[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1759-1766. doi: 10.11999/JEIT170989

Fault-tolerant Last Level Cache Architecture Design at Near-threshold Voltage

doi: 10.11999/JEIT170989
Funds:

The National Natural Science Foundation of China (61672384), The Ministry of Education of Humanities and Social Science project (16YJCZH014), The Natural Science Foundation of Hubei Province (2016CFB466), The Fundamental Research Funds for the Central Universities (WUT: 2016III028, 2017III028-005), Major Program of Technical Innovation Special Program in Hubei Province of China (2017AAA122)

  • Received Date: 2017-10-23
  • Rev Recd Date: 2018-04-03
  • Publish Date: 2018-07-19
  • Near-threshold voltage computing enables transistor voltage scaling to continue with Moore’s Law projection and dramatically improves power and energy efficiency. However, a great number of bit-cell errors occur in large SRAM structures, such as Last-Level Cache (LLC). A Fault-Tolerant LLC (FTLLC) design with conventional 6T SRAM cells is proposed to deal with a higher failure rate which is more than 1% at near-threshold voltage. FTLLC improves the reliability of data stored in Cache by correcting the single-error and compressing multi-errors in Cache entry. To validate the efficiency of FTLLC, FTLLC and prior works are implemented in gem5, and are simulated with SPEC CPU2006. The experiment shows that compared with Concertina at 650 mV, the performance of a 65 nm FTLLC with 4-Byte subblock size improves by 7.2% and the Cache capacity increases by 24.9%. Besides, the miss rate decreases by 58.2%, and there are little increases on area overhead and power consumption.
  • loading
  • ALAMELDEEN A R, WAGNER I, CHISHTI Z, et al. Energy-efficient cache design using variable-strength error-correcting codes[C]. Proceedings of the 38th Annual International Symposium on Computer Architecture, New York, 2011: 461-472. doi: 10.1145/2000064.2000118.
    [2] DRESLINSKI R G, WIECKOWSKI M, BLAAUW D, et al. Near-threshold computing: Reclaiming Moore's Law through energy efficient integrated circuits[J]. Proceedings of the IEEE, 2010, 98(2): 253-266. doi: 10.1109/JPROC.2009.2034764.
    ZHANG Yonghuan and JIANG Yanfeng. Research progress of near threshold voltage circuits[J]. Microelectronics, 2016, 46(1): 107-112. doi: 10.13911/j.cnki.1004-3365.2016.01.024.
    [4] CHISHTI Z, ALAMELDEEN A R, WILKERSON C, et al. Improving cache lifetime reliability at ultra-low voltages[C]. Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, New York, 2009: 89-99. doi: 10.1145/1669112.1669126.
    [5] HIJAZ F, SHI Qingchuan, and KHAN O. A private level-1 cache architecture to exploit the latency and capacity tradeoffs in multicores operating at near-threshold voltages [C]. IEEE 31st International Conference on Computer Design, Asheville, 2013: 85-92. doi: 10.1109/ICCD.2013.6657029.
    ZHAO Cai, DING Yonglin, and CHEN Zhijian. Fault- tolerance cache research based on mixed ECC[J]. Application Research of Computers, 2016, 33(2): 444-446. doi: 10.3969/ j.issn.1001-3695.2016.02.029.
    [7] DUWE H, JIAN Xun, PETRISKO D, et al. Rescuing uncorrectable fault patterns in on-chip memories through error pattern transformation[C]. Proceedings of the 43rd International Symposium on Computer Architecture, Seoul, 2016: 634-644. doi: 10.1109/ISCA.2016.61.
    [8] WANG Jing, LIU Yanjun, ZHANG Weigong, et al. Exploring variation-aware fault-tolerant cache under near-threshold computing[C]. 45th International Conference on Parallel Processing, Philadelphia, 2016: 149-158. doi: 10.1109/ICPP. 2016.24.
    [9] FERRERÓN A, SUÁREZ-GRACIA D, ALASTRUEY- BENEDÉ J, et al. Concertina: Squeezing in cache content to operate at near-threshold voltage[J]. IEEE Transactions on Computers, 2016, 65(3): 755-769. doi: 10.1109/TC.2015. 2479585.
    [10] WANG Ying, HAN Yinhe, LI Huawei, et al. VANUCA: Enabling near-threshold voltage operation in large-capacity cache[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(3): 858-870. doi: 10.1109/TVLSI.2015. 2424440.
    [11] JUNG D, LEE H, and KIM S W. Lowering minimum supply voltage for power-efficient cache design by exploiting data redundancy[J]. ACM Transactions on Design Automation of Electronic Systems, 2015, 21(1): 1-24. doi: 10.1145/2795229.
    [12] CALHOUN B H and CHANDRAKASAN A P. A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation[J]. IEEE Journal of Solid-State Circuits, 2007, 42(3): 680-688. doi: 10.1109/JSSC.2006.891726.
    YANG Kun. Low power SRAM research and design under near-threshold voltage supply[D]. [Master dissertation], Shanghai Jiao Tong University, 2011.
    QI Beibei. The design of near-threshold adiabatic SRAM[D]. [Master dissertation], Ningbo University, 2015.
    YU Yuqing, WANG Tianqi, QI Chunhua, et al. The analysis of the stability of 65nm SRAM at near-threshold region[J]. Microelectronics & Computer, 2017, 34(1): 26-29. doi: 10.19304/j.cnki.issn1000-7180.2017.01.006.
    [16] HENNING J L. SPEC CPU2006 benchmark descriptions[J]. ACM SIGARCH Computer Architecture News, 2006, 34(4): 1-17. doi: 10.1145/1186736.1186737.
    [17] DUWE H, JIAN Xun, and KUMAR R. Correction prediction: Reducing error correction latency for on-chip memories[C]. IEEE 21st International Symposium on High Performance Computer Architecture, California, 2015: 463-475. doi: 10.1109/HPCA.2015.7056055.
    [18] MURALIMANOHAR N, BALASUBRAMONIAN R, and JOUPPI N P. Optimizing NUCA organizations and wiring alternatives for large Caches with CACTI 6.0[C]. Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, Chicago, 2007: 3-14. doi: 10.1109/MICRO. 2007.33.
    [19] BINKERT N, BECKMANN B, BLACK G, et al. The gem5 simulator[J]. ACM SIGARCH Computer Architecture News, 2011, 39(2): 1-7. doi: 10.1145/2024716.2024718.
    [20] LI Sheng, AHN J H, STRONG R D, et al. McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures[C]. Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, New York, 2010: 469-480. doi: 10.1145/ 1669112.1669172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1446) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return