Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
ZHU Xuhui, NI Zhiwei, NI Liping, JIN Feifei, CHENG Meiying, LI Jingming. Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984
Citation: ZHU Xuhui, NI Zhiwei, NI Liping, JIN Feifei, CHENG Meiying, LI Jingming. Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984

Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning

doi: 10.11999/JEIT170984
Funds:

The National Natural Science Foundation of China (91546108, 71271071, 71490725, 71301041), The National Key Research and Development Plan (2016YFF0202604), Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making

  • Received Date: 2017-10-23
  • Rev Recd Date: 2018-04-02
  • Publish Date: 2018-07-19
  • The key to the success of an ensemble system are the diversity and the average accuracy of base classifiers. The increase of diversity among base classifiers will lead to the decrease of the average accuracy, and vice versa. So there exists a tradeoff between the diversity and the average accuracy, which makes the ensemble perform the best with respect to ensemble pruning. To find the tradeoff, Improved Binary Glowworm Swarm Optimization combined with Complementarity measure for Ensemble Pruning (IBGSOCEP) is proposed. Firstly, an initial pool of classifiers is constructed through training independently some base classifiers using bootstrap sampling. Secondly, the classifiers in the initial pool are pre-pruned using complementarity measure. Thirdly, Improved Binary Glowworm Swarm Optimization (IBGSO) is proposed by improving moving way, searching processes of glowworm, introducing re-initialization, and leaping behaviors. Finally, the optimal sub-ensemble is achieved from the base classifiers after pre-pruning using IBGSO. Experimental results on 5 UCI datasets demonstrate that IBGSODSEN can achieve better results than other approaches with less number of base classifiers, and that its effectiveness and significance.
  • loading
  • BASHBAGHI S, GRANGER E, SABOURIN R, et al. Dynamic ensembles of exemplar-SVMs for still-to-video face recognition[J]. Pattern Recognition, 2017, 69(C): 61-81. doi: 10.1016/j.patcog.2017.04.014.
    LIU Jiachen, MIAO Qiguang, CAO Ying, et al. Ensemble one-class classifiers based on hybrid diversity generation and pruning[J]. Journal of Electronics & Information Technology, 2015, 37(2): 386-393. doi: 10.11999/JEIT140161.
    [3] LI Kai, XING Junliang, HU Weiming, et al. D2C: Deep cumulatively and comparatively learning for human age estimation[J]. Pattern Recognition, 2017, 66(6): 95-105. doi: 10.1016/j.patcog.2017.01.007.
    [4] LU Huijuan, AN Chunlin, ZHENG Enhui, et al. Dissimilarity based ensemble of extreme learning machine for gene expression data classification[J]. Neurocomputing, 2014, 128(5): 22-30. doi: 10.1016/j.neucom.2013.02.052.
    YANG Chun, YIN Xucheng, HAO Hongwei, et al. Classifier ensemble with diversity: Effectiveness analysis and ensemble optimization[J]. Acta Automatica Sinica, 2014, 40(4): 660-674. doi: 10.3724/SP.J.1004.2014.00660.
    [6] YKHLEF H and BOUCHAFFRA D. An efficient ensemble pruning approach based on simple coalitional games[J]. Information Fusion, 2017, 34(C): 28-42. doi: 10.1016/j.inffus. 2016.06.003.
    [7] ZHOU Zhihua, WU Jianxin, and TANG Wei. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1): 239-263. doi: 10.1016/S0004- 3702(02)00190-X.
    [8] MARTÍNEZ-MUÑOZ G, HERNANDEZ LOBATO D, and SUAREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245-259. doi: 10.1109/TPAMI.2008.78.
    [9] GUO Li and BOUKIR S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013, 34(6): 603-609. doi: 10.1016/j.patrec.2013.01.003.
    [10] DAI Qun, ZHANG Ting, and LIU Ningzhong. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing, 2015, 28(3): 237-249. doi: 10.1016/j.asoc.2014. 10.045.
    [11] ROKACH L. Collective-agreement-based pruning of ensembles[J]. Computational Statistics and Data Analysis, 2009, 53(4): 1015-1026. doi: 10.1016/j.csda.2008.12.001.
    [12] LAZAREVIC A and OBRADOVIC Z. Effective pruning of neural network classifier ensembles[C]. International Joint Conference on Neural Networks, Washington DC, USA, 2001: 796-801. doi: 10.1109/IJCNN.2001.939461.
    [13] GIACINTO G, ROLI F, and FUMERA G. Design of effective multiple classifier systems by clustering of classifiers[C]. International Conference on Pattern Recognition, Barcelona, Spain, 2000: 160-163. doi: 10.1109/ICPR.2000.906039.
    [14] BAKKER B and HESKES T. Clustering ensembles of neural network models[J]. Neural Network, 2003, 16(2): 261-269. doi: 10.1016/S0893-6080(02)00187-9.
    [15] ZHOU Hongfang, ZHAO Xuehan, and WANG Xiao. An effective ensemble pruning algorithm based on frequent patterns[J]. Knowledge-Based Systems, 2014, 56(C): 79-85. doi: 10.1016/j.knosys.2013. 10.024.
    [16] CAVALCANTI G D C, OLIVEIRA L S, NOURA T J M, et al. Combining diversity measures for ensemble pruning[J]. Pattern Recognition Letters, 2016, 74(C): 38-45. doi: 10.1016 /j.patrec.2016.01.029.
    NI Zhiwei, ZHANG Chen, and NI Liping. Haze forecast method of selective ensemble based on glowworm swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 143-153. doi: 10.16451/j.cnki. issn1003-6059.201602006.
    [18] MARINAKI M and MARINAKI Y. A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands[J]. Expert Systems with Applications, 2016, 46(C): 145-163. doi: 10.1016/j.eswa.2015.10.012.
    [19] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350.
    [20] SINGHAL P K, NARESH R, and SHARMA V. Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints [J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1697-1707. doi: 10.1049/iet-gtd.2015.0201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1191) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return