Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Yi WU, Chunlan LUO, Xinqiu ZHANG, Xiao LIN, Zhexin XU. A Fast Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1949-1955. doi: 10.11999/JEIT170983
Citation: Yi WU, Chunlan LUO, Xinqiu ZHANG, Xiao LIN, Zhexin XU. A Fast Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1949-1955. doi: 10.11999/JEIT170983

A Fast Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code

doi: 10.11999/JEIT170983
Funds:  The National Natural Science Foundation of China (61571128, 61701118)
  • Received Date: 2017-10-23
  • Rev Recd Date: 2018-04-23
  • Available Online: 2018-05-30
  • Publish Date: 2018-08-01
  • In order to reduce the computational complexity of computing unknown syndromes for the coefficients of the error-locator polynomial and reduce the decoding time when one is decoding, this paper proposed an algebraic decoding algorithm of (41, 21, 9) QR code without calculating the unknown syndromes by solving the Newtonian identity. Simultaneously, an objective theoretical analysis of the computational complexity is given for the part of improvement. Besides, this paper also puts forward the simplifying conditions to determine the number of errors in the received word, which in order to further reducing the decoding time. Simulation results show that the proposed algorithm reduces the decoding time with maintaining the same decoding performance of Lin’s algorithm.
  • loading
  • PRANGR E. Cyclic error-correcting codes in two symbols, AFCRC-TN-57-103[R]. Cambridge, MA: AirForce Cambridge Research Center, 1957.
    LEE Chongdao, CHANG Yaotsu, and CHANG Hohsuan. Unusual general error locator polynomial for the (23, 12, 7) golay code[J]. IEEE Communications Letters, 2010, 14(4): 339–341. DOI: 10.1109/LCOMM.2010.04.091969.
    REED I S, TRUONG T K, CHEN Xuemin, et al. The algebraic decoding of the (41, 21, 9) quadratic residue code[J]. IEEE Transactions on Information Theory, 1992, 38(3): 974–986. DOI: 10.1109/18.135639.
    CHEN Xuemin, REED I S, HELLESETH T, et al. Use of gröbner bases to decode binary cyclic codes up to the true minimum distance[J]. IEEE Transactions on Communication, 1994, 40(5): 1654–1661. DOI: 10.1109/18.333885.
    CHIEN R. Cyclic decoding procedure for Bose-Chaudhuri-Hocquenghem codes[J]. IEEE Transactions on Information Theory, 1964, 10(4): 357–363. DOI: 10.1109/TIT.1964.1053699.
    CHEN Yanhaw, HUANG Chingfu, and CHANG J. Decoding of binary quadratic residue codes with hash table[J]. IET Communications, 2016, 10(1): 122–130. DOI: 10.1049/iet-com.2015.0546.
    LIN Tsungching, LEE Chongdao, CHEN Yanhaw, et al. Algebraic decoding of cyclic codes without error-locator polynomials[J]. IEEE Transactions on Communications, 2016, 64(7): 2719–2731. DOI: 10.1109/TCOMM.2016.2569078.
    ZHANG Pengwei, LI Yong, CHANG Hsinchiu, et al. Fast decoding of the (47, 24, 11) quadratic residue code without determining the unknown syndromes[J]. IEEE Communications Letters, 2015, 19(8): 1279–1282. DOI: 10.1109/LCOMM.2015.2440263.
    陈高明, 黎勇, 董灿, 等. 一种(71, 36, 11)QR码的快速代数译码算法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(6): 781–785. DOI: 10.3979 /j.issn.1673-825X.2015.06.013.

    CHEN Gaoming, LI Yong, DONG Can, et al. A fast algebraic decoding algorithm of the (71, 36, 11) quadratic residue code[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(6): 781–785. DOI: 10.3979/j.issn. 1673-825X. 2015.06.013.
    LIN Tsungching, CHANG Hsinchiu, LI Yong, et al. Algebraic decoding of the (71, 36, 11) quadratic residue code[J]. IET Communications, 2016, 10(6): 734–738. DOI: 10.1049/iet-com.2015.0159.
    HUANG Chingfu and CHEN Yanhaw. Efficient software method for decoding of the (71, 36, 11) quadratic residue code[C]. Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, Australia, 2015: 45–48.
    LIN Tsungching, TRUONG T K, LEE Hungpeng, et al. Algebraic decoding of the (41, 21, 9) quadratic residue code[J]. Information Sciences, 2009, 179(19): 3451–3459. DOI: 10.1016/j.ins.2009.06.002.
    FENG G and TZENG K. A new procedure for decoding cyclic and BCH codes up to actual minimum distance[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1364–1374. DOI: 10.1109/18.333854.
    MACWILLIMS F J and SLOANE N J A. The Theory of Error Correcting Codes[M]. New York: North Holland, 1977: 244–245.
    WANG C C, TRUONG T K, SHAO H M, et al. VLSI architectures for computing multiplications and inverses in GF(2m)[J]. IEEE Transactions on Computers, 1985, C-34(8):709–717. DOI: 10.1109/TC.1985.1676616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (1649) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return