Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
LIU Xinbo, WANG Buhong, YANG Zhixian, LIU Shuaiqi. A Virtual Network Embedding Algorithm Based on Topology Potential[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981
Citation: LIU Xinbo, WANG Buhong, YANG Zhixian, LIU Shuaiqi. A Virtual Network Embedding Algorithm Based on Topology Potential[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981

A Virtual Network Embedding Algorithm Based on Topology Potential

doi: 10.11999/JEIT170981
Funds:

The National Natural Science Foundation of China (61401499), Shanxi Provincial Natural Science Foundation (2015JM6340)

  • Received Date: 2017-10-20
  • Rev Recd Date: 2018-02-27
  • Publish Date: 2018-07-19
  • To improve the low acceptance ratio and revenue-cost ratio caused by the negligence of the topology attribute of the nodes in the existing virtual network embedding algorithm, the theory of fields in physics is introduced into the virtual network embedding, and a Virtual Network Embedding algorithm based on Topology Potential (TP-VNE) is proposed. In the node embedding stage, the virtual node is embedded onto the optimal physical node by calculating the topology potential of the node, the resource capacity of the node, and the distance between the embedded nodes and the node to embed. In the link embedding stage, the virtual link is embedded onto the best physical path by calculating the available bandwidth of the path and the hops of the path. Experimental results show that the proposed algorithm has the higher acceptance ratio and revenue-cost ratio compared with the existing virtual network embedding algorithm in all simulation conditions.
  • loading
  • [2] FENG Jianyuan, ZHANG Qixun, DONG Guangzhe, et al. An approach to 5G wireless network virtualization: Architecture and trial environment[C]. IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1-6.
    KHOT A S, GAWAS J, and WAMAN S. Network virtualization on optical networks[C]. International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 2016: 568-573.
    [3] GHODA G, MERULIYA N, PAREKH D H, et al. A survey on data center network virtualization[C]. International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 3464-3470.
    [4] ALCOBER J, HESSELBACH X, OLIVA A, et al. Internet future architectures for network and media independent services and protocols[C]. International Conference on Transparent Optical Networks, Cartagena, Spain, 2013: 1-4.
    [5] ANDERSON T, PETERSON L, SHENKER S, et al. Overcoming the Internet impasse through virtualization[J]. Computer, 2005, 38(4): 34-41. doi: 10.1109/MC.2005.136.
    YU Jianjun and WU Chunming. Virtual network mapping approximation algorithm with admission control[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1235-1241. doi: 10.3724/SP.J.1146.2013.00965.
    [7] AMALDI E, CONIGLIO S, KOSTER A M C A, et al. On the computational complexity of the virtual network embedding problem[J]. Electronic Notes in Discrete Mathematics, 2016, 52(6): 213-220. doi: 10.1016/j.endm.2016.03.028.
    [8] WANG Li, QU Hua, ZHAO Jihong, et al. Virtual network embedding with discrete particle swarm optimization[J]. Electronics Letters, 2014, 50(4): 285-286. doi: 10.1049/el. 2013.3202.
    [9] GUAN Xinjie, WAN Xili, CHOI B Y, et al. Ant colony optimization based energy efficient virtual network embedding[C]. IEEE 4th International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 273-278.
    [10] RICCI R, ALFELD C, and LEPREAU J. A solver for the network testbed mapping problem[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(2): 65-81. doi: 10.1145/956981.956988.
    [11] ZHU Yong and AMMAR M. Algorithms for assigning substrate network resources to virtual network components [C]. IEEE International Conference on Computer Communications, Barcelona, Spain, 2006: 1-12.
    [12] YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29. doi: 10.1145/1355734.1355737.
    [13] CHENG Xiang, SU Sen, ZHANG Zhongbao, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(2): 39-47. doi: 10.1145/1971162.1971168.
    [14] DING Jian, HUANG Tao, LIU Jiang, et al. Virtual network embedding based on real-time topological attributes[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(2): 109-118.
    [15] GONG Shuiqing, CHEN Jing, ZHAO Siyi, et al. Virtual network embedding with multi-attribute node ranking based on TOPSIS[J]. KSII Transactions on Internet and Information Systems, 2016, 10(2): 522-541. doi: 10.3837/tiis. 2016.02.005.
    [16] BIANCHI F and PRESTI FL. A markov reward model based greedy heuristic for the virtual network embedding problem[C]. IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, London, UK, 2016: 373-378.
    GAN Wenyan, LI Deyi, and WANG Jianmin. An hierarchical clustering method based on data fields[J]. Acta Electronica Sinica, 2006, 34(2): 258-262.
    [18] HE Nan, GAN Wenyan, and L I Deyi. Evaluate nodes importance in the network using data field theory[C]. International Conference on Convergence Information Technology, Gyeongju, South Korea, 2007: 1225-1230.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1586) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return