Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
NIU Zhihua, KONG Deyu. Algorithm for Computing the k-error Linear Complexity and the Corresponding Error Sequence of 2pn-periodic Sequences over GF(q)[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1723-1730. doi: 10.11999/JEIT170972
Citation: NIU Zhihua, KONG Deyu. Algorithm for Computing the k-error Linear Complexity and the Corresponding Error Sequence of 2pn-periodic Sequences over GF(q)[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1723-1730. doi: 10.11999/JEIT170972

Algorithm for Computing the k-error Linear Complexity and the Corresponding Error Sequence of 2pn-periodic Sequences over GF(q)

doi: 10.11999/JEIT170972
Funds:

Shanghai Natural Science Foundation (16ZR1411200, 17ZR1409800), The National Nature Science Foundation of China (61772022, 61572309, 61462077)

  • Received Date: 2017-10-20
  • Rev Recd Date: 2018-01-15
  • Publish Date: 2018-07-19
  • The k-error linear complexity of a sequence is a fundamental concept for assessing the stability of the linear complexity. After computing the k-error linear complexity of a sequence, those bits that make the linear complexity reduced also need to be computed. For 2pn-periodic sequence over GF(q) , where p and q are odd primes and q is a primitive root modulo p2, an algorithm is presented, which not only computes the k-error linear complexity of a sequence s but also gets the corresponding error sequence e. A function is designed to trace the vector cost called “trace function”, so the error sequence e can be computed by calling the “trace function”, and the linear complexity of (s+e) reaches the k-error linear complexity of the sequence s.
  • loading
  • MASSEY J L. Shift-register synthesis and BCH decoding [J]. IEEE Transaction on Information Theory, 1969, 15(1): 122-127. doi: 10.1109/TIT.1969.1054260.
    [2] DING Cunsheng, XIAO Guozhen, and SHAN Weijuan. The Stability Theory of Stream Ciphers[M]. Berlin: Springer- Verlag, 1991.
    DING Cunsheng and XIAO Guozhen. Stream Cipher and Applications[M]. Beijing: National Defense Industry Press, 1994: 1-275.
    [4] STAMP M and MARTIN C F. An algorithm for the k-error linear complexity of binary sequences with period  2n[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1398-1401. doi: 10.1109/18.243455.
    [5] GAMES R A and CHAN A. A fast algorithm for determining the complexity of a binary sequence with period 2n[J]. IEEE Transaction on Information Theory, 1983, 29(1): 144-146. doi: 10.1109/TIT.1983.1056619.
    [6] LAUDER A G B and PATERSON K G. Computing the error linear complexity spectrum of a binary sequence of period 2n[J]. IEEE Transactions on Information Theory, 2003, 49(1): 273-280. doi: 10.1109/TIT.2002.806136.
    [7] XIAO Guozhen, WEI Shimin, LAM K Y, et al. A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q)[J]. IEEE Transactions on Information Theory, 2000, 46(6): 2203-2206. doi: 10.1109/ 18.868492.
    [8] WEI Shimin, CHEN Zhong, and XIAO Guozhen. A fast algorithm for the k-error linear complexity of a binary sequence[C]. International Conferences on Info-tech and Info-net, Beijing, 2001: 152-157.
    [9] MEIDL W. Linear Complexity and k-Error Linear Complexity for pn-Periodic Sequences[M]. Basel, Birkhäuser, Coding, Cryptography and Combinatorics, 2004: 227-235.
    [10] TANG Miao and ZHU Shixin. On the error linear complexity spectrum of  pn-periodic binary sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(6): 497-505. doi: 10.1007/s00200-013-0210-3.
    [11] WEI Shimin, XIAO Guozhen, and CHEN Zhong. A fast algorithm for determining the minimal polynomial of a sequence with period 2pn over GF(q) [J]. IEEE Transactions on Information Theory, 2002, 48(10): 2754-2757. doi: 10.1109 /TIT.2002.802609.
    [12] ZHOU Jianqin. On the k-error linear complexity of sequences with period 2pn over GF(q)[J]. Designs Codes & Cryptography, 2011, 58(3): 279-296. doi: 10.1007/s10623-010-9379-7.
    [13] NIU Zhihua, LI Zhe, CHEN Zhixiong, et al. Computing the k-error linear complexity of q-ary sequences with period 2pn[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(9): 1637-1641. doi: 10.1587/transfun.E95.A.1637.
    [14] CHEN Zhixiong, NIU Zhihua, and WU Chenhuang. On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. Science China Information Sciences, 2015, 58(9): 1-15. doi: 10.1007/s11432-014-5220-7.
    [15] NIU Zhihua, CHEN Zhixiong, and DU Xiaoni. Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Science China Information Sciences, 2016, 59(3): 1-12. doi: 10.1007/s11432-015-5305-y.
    [16] LIU Longfei, YANG Xiaoyuan, DU Xiaoni, et al. On the k-error linear complexity of generalised cyclotomic sequences [J]. International Journal of High Performance Computing & Networking, 2016, 9(5/6): 394-400. doi: 10.1504/IJHPCN. 2016.080411.
    [17] LIU Longfei, YANG Xiaoyuan, DU Xiaoni, et al. On the linear complexity of new generalized cyclotomic binary sequences of order two and period pqr[J]. Tsinghua Science & Technology, 2016, 21(3): 295-301. doi: 10.1109/TST.2016. 7488740.
    [18] PAN Wenlun, BAO Zhenzhen, LIN Dongdai, et al. The distribution of 2n-periodic binary sequences with fixed k-error linear complexity[C]. International Conference on Information Security Practice and Experience, Zhangjiajie, China, 2016: 13-36.
    [19] YU Fangwen, SU Ming, WANG Gang, et al. Error decomposition algorithm for approximating the k-error linear complexity of periodic sequences[C]. IEEE TrustCom/ BigDataSE/ISPA, Tianjin, China, 2016: 505-510.
    [20] SALAGEAN A. On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two[J]. IEEE Transaction on Information Theory, 2005, 51(3): 1145-1150. doi: 10.1109/TIT.2004. 842769.
    [21] TANG Miao. An algorithm for computing the error sequence of pn-periodic binary sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2014, 25(3), 197-212. doi: 10.1007/s00200-014-0222-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1179) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return