Advanced Search
Volume 40 Issue 10
Sep.  2018
Turn off MathJax
Article Contents
Wei ZHANG, Jingjing DUAN, Yansong WANG. A Non-stationary 3D Spatial Channel Model Based on Stochastic Scattering Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2301-2308. doi: 10.11999/JEIT170929
Citation: Wei ZHANG, Jingjing DUAN, Yansong WANG. A Non-stationary 3D Spatial Channel Model Based on Stochastic Scattering Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2301-2308. doi: 10.11999/JEIT170929

A Non-stationary 3D Spatial Channel Model Based on Stochastic Scattering Cluster

doi: 10.11999/JEIT170929
Funds:  The National Natural Science Foundation of China (61671167), Natural Science Foundation of Heilongjiang Province (F2017003)
  • Received Date: 2017-10-09
  • Rev Recd Date: 2018-06-26
  • Available Online: 2018-07-30
  • Publish Date: 2018-10-01
  • To describe the near field effect and the non-stationary characteristic of the Massive MIMO channel, a non-stationary 3D spatial channel model based on stochastic scattering clusters for Massive MIMO systems is proposed. The parabolic wave instead of the spherical wave is used to model the near field effect, and the channel capacity of the model is analyzed under parabolic wavefront condition. For non-stationary properties of massive MIMO channel, the effective scattering clusters set of transmitting and receiving antenna elements is determined based on the effective probability of scattering clusters, and the stochastic evolution of scattering clusters along the antenna array axis is modeled to describe properly the appearance and disappearance of scattering clusters. Simulation results demonstrate that parabolic wavefront and the stochastic evolution of effective scattering clusters are good candidates to model Massive MIMO channel characteristics.
  • loading
  • DONG Lei, ZHAO Hongyi, CHEN Yan, et al. Introduction on IMT-2020 5G trials in China[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1849–1866 doi: 10.1109/JSAC.2017.2710678
    WANG Chengxiang, WU Shangbin, BAI Lu, et al. Recent advances and future challenges on massive MIMO channel measurements and models[J]. Science China Information Sciences, 2016, 59(2): 21301–21302 doi: 10.1007/s11432-015-5517-1
    刘留, 陶成, 卢艳萍, 等. 大规模多天线无线信道及容量特性研究[J]. 北京交通大学学报, 2015, 39(2): 69–79 doi: 10.11860/j.issn.1673-0291

    LIU Liu, TAO Cheng, LU Yanping, et al. Research on the propagation condition and channel capacity for Massive MIMO[J]. Journal of Beijing Jiaotong University, 2015, 39(2): 69–79 doi: 10.11860/j.issn.1673-0291
    GAO Xiang, TUFVESSON F, and EDFORS O. Measured propagation characteristics for very-large MIMO at 2.6 GHz[C]. Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, USA, 2012: 295–299.
    GAO Xiang, TUFVESSON F, and EDFORS O. Massive MIMO channels-measurements and models models[C]. Asilomar Conference on Signals, Systems and Computers(ACSSC), Pacific Grove, USA, 2013: 280–284.
    ZHANG Ping, CHEN Jianqiao, and TANG Tian. An overview of non-stationary property for massive MIMO channel modeling[J]. ZTE Communications, 2017, 15(1): 3–7 doi: 10.3969/j.issn.1673-5188.2017.01.001
    WU Shangbin, WANG Chengxiang, AGGOUNE M, et al. A non-stationary wideband channel model for massive MIMO communication systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1434–1446 doi: 10.1109/TWC.2014.2366153
    WU Shangbin, WANG Chengxiang, AGGOUNE M, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1207–1218 doi: 10.1109/JSAC.2014.2328131
    LI X, ZHOU S, BJORNSON E, et al. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 7044–7056 doi: 10.1109/TWC.2015.2464219
    ADEMAJ F, TARANETZ M, and RUPP M. 3GPP 3D MIMO channel model: A holistic implementation guideline for open source simulation tools[J]. Eurasip Journal on Wireless Communications and Networking, 2016, 2016(1): 55–67 doi: 10.1186/s13638-016-0549-9
    LOPEZ F, WANG Chengxiang, and FENG Rui. A novel 2D non-stationary wideband massive MIMO channel model[C]. Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), Toronto, Canada, 2016: 2378–2382.
    ABDI A and KAVEH M. A versatile spatio-temporal correlation function for mobile fading channels with non-isotropic scattering[C]. Proceedings of the Tenth IEEE Workshop on Statistical Signal Array Processing, Pocono Manor, USA, 2000: 58–62.
    PATZOLD M. Mobile Radio Channels[M]. West Sussex: John Wiley & Sons, 2012: 369–375.
    MAMMASIS K, STEWART W R, PFANN E, et al. Three-dimensional channel modelling using spherical statistics for multiple-input multiple-output systems[J]. IET Communications, 2008, 3(1): 48–56 doi: 10.1049/iet-com:20070518
    LIU Liu, MATOLAK D W, TAO Cheng, et al. Channel capacity investigation of a linear massive MIMO system using spherical wave model in LOS scenarios[J]. Science China Information Sciences, 2016, 59(2): 1–15 doi: 10.1007/s11432-015-5512-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1853) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return