Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
Citation: JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906

Symbol Rate Estimation Based on Sparse Bayesian Learning

doi: 10.11999/JEIT170906
Funds:

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shannxi Province (2014JMS304)

  • Received Date: 2017-09-26
  • Rev Recd Date: 2018-03-14
  • Publish Date: 2018-07-19
  • Existing methods for symbol rate estimation of phase coded signals require amounts of sensing data, and are of high computational complexity. This paper analyzes the structure characteristics of BPSK signals, which are employed as the prior information for signal compressing and dimensionality reduction. The sensing matrix can be split into sine and cosine component, combined with the Fourier transform parity. According to the fact that the real and imaginary components of a complex value share the same support set, the symbol rate estimation can be obtained, using unilateral spectral of the delay-product vector reconstructed by multi-task Bayesian compressive sensing. Theoretical analysis and simulation results show that compared with other parameter estimation algorithms, the proposed method can reduce the measurements and significantly improve the real-time ability, while keeping the high reconstruction accuracy.
  • loading
  • [2] YILDIRIM A. Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2017, 10(9): 1073-1081. doi: 10.1049/iet-spr.2016.0237.
    JIN Yan, and JI Hongbing. Robust symbol rate estimation of PSK signals under the cyclostationary framework[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 599-612. doi: 10.1007/s00034-013-9639-7.
    [3] GARDNER W. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36. doi: 10.1109/79.81007.
    [4] DIKMESE S, ILYAS Z, SOFOTASIOS P C, et al. Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 159-172. doi: 10.1109 /JSAC.2016.2633058.
    [5] KHALAF Z and PALICOT J. New Blind Free-Band Detectors Exploiting Cyclic Autocorrelation Function Sparsity[M]. Switzerland: Springer International Publishing, 2014: 91-117.
    [6] BOLLIG A and MATHAR R. Dictionary-based reconstruction of the cyclic autocorrelation via l1-minimization for cyclostationary spectrum sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 4908-4912. doi: 10.1109/ICASSP.2013.6638594.
    [7] CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. Gridless sparse reconstruction for the cyclic autocorrelation estimation[C]. IEEE International Conference on Advanced Communication Technology, Pyeongchang, South Korea, 2016: 254-259. doi: 10.1109/ICACT.2016. 7423349.
    LIU Fang, WU Jiao, YANG Shuyuan, et al. Research advances on structured compressive sensing[J]. Acta Automatica Sinica, 2013, 39(12): 1980-1995. doi: 10.3724/ SP.J.1004.2013.01980.
    [9] TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. doi: 10.1162/15324430152748236.
    [10] HUANG X, ZHAO Q, JIANG W, et al. Frequency estimation of cyclic spectrum carrier based on compressive sampling of BPSK signal[C]. IET International, Radar Conference, Hangzhou, China, 2015: 1-4. doi: 10.1049/cp.2015.1373.
    [11] KHALAF Z, NAFKHA A, and PALICOT J. Blind spectrum detector for cognitive radio using compressed sensing and symmetry property of the second order cyclic autocorrelation [C]. IEEE International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications, Stockholm, Sweden, 2012: 291-296. doi: 10.4108/icst. crowncom.2012.248133.
    [12] WU Qisong, ZHANG Yimin D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3375-3379. doi: 10.1109/ ICASSP.2014.6854226.
    WANG Wei, TANG Weimin, WANG Ben, et al. Sparse signal recovery based on complex bayesian compressive sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056.
    ZHAO Shujie and ZHAO Jianxun. Signal Detection and Estimation Theory[M]. Beijing: Publishing House of Electronics Industry, 2013: 129-139.
    [15] JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92-106. doi: 10.1109/TSP.2008. 2005866.
    [16] GIRI R and RAO B. Type I and Type II Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3418-3428. doi: 10.1109/TSP.2016.2546231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1373) PDF downloads(208) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return