Citation: | Huihui SHEN, Hongwei LI. An Improved Algorithm of Product of Experts System Based on Restricted Boltzmann Machine[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2173-2181. doi: 10.11999/JEIT170880 |
LIAO S H. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems with Applications, 2005, 28: 93–103 doi: 10.1016/j.eswa.2004.08.003
|
VUNDAVILLI PANDU R, PHANI KUMAR J, SAI PRIYATHAM CH, et al. Neural network-based expert system for modeling of tube spinning process[J]. Neural Computing and Application, 2015, 26(6): 1481–1493 doi: 10.1007/s00521-015-1820-4
|
MAYRAZ G and HINTON G E. Recognizing handwritten digits using hierarchical products of experts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 189–197 doi: 10.1109/34.982899
|
焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(1): 1–21 doi: 10.11897/SP.J.1016.2016.01697
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Neural network in seventy: Retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(1): 1–21 doi: 10.11897/SP.J.1016.2016.01697
|
HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1711–1800 doi: 10.1162/089976602760128018
|
罗剑江, 王振友. 一种提高受限玻尔兹曼机性能的反正切函数逼近L0范数方法[J]. 小型微型计算机系统, 2016(11): 2562–2566
LUO Jianjiang and WANG Zhenyou. Enhancing performance of restricted Boltzmann machine using Arctan approximation of L0 norm[J]. Journal of Chinese Computer Systems, 2016(11): 2562–2566
|
王岳青, 窦勇, 吕启, 等. 基于异构体系结构的并行深度学习编程框架[J]. 计算机研究与发展, 2016, 53(6): 1202–1210 doi: 10.7544/issn1000-1239.2016.20150147
WANG Yueqing, Dou Yong, Lü Qi, et al. A parallel deep learning programming framework based on heterogeneous architecture[J]. Journal of Computer Research and Development, 2016, 53(6): 1202–1210 doi: 10.7544/issn1000-1239.2016.20150147
|
ZHANG Chunyang, CHEN Philip, CHEN Dewang, et al. MapReduce based distributed learning algorithm for Restricted Boltzmann Machine[J]. Neurocomputing, 2016(198): 4–11 doi: 10.1016/j.neucom.2015.09.129
|
POLYAK T. Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1–17 doi: 10.1016/0041-5553(64)90137-5
|
SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]. Proceedings of International Conference on Machine Learning, Atlanta, USA, 2013: 1139–1147.
|
ZAREBA S, GONCZAREK A, TOMCZAK J M, et al. Accelerated learning for restricted Boltzmann machine with momentum term[C]. Proceedings of International Conference on Systems Engineering, Coventry, UK, 2015: 187–192.
|
YUAN Kun, YING Bicheng, and SAYED A H. On the influence of momentum acceleration on online learning[J]. Journal of Machine Learning Research, 2016(17): 1–66.
|
HINTON G E. A practical guide to training restricted Boltzmann machines[R]. Toronto: Machine Learning Group, University of Toronto, 2012: 599–619.
|
FISCHER A and CHRISTIAN I. Training restricted Boltzmann machines: An introduction[J]. Pattern Recognition, 2014, 47: 25–39. doi: 10.1007/s13218-015-0371-2
|
SMOLENSKY P. Information Processing in Dynamical Systems: Foundations of Harmony Theory[M]. Cambridge, MA: MIT Press, 1986: 195–280.
|
ROUX N L and BENGIO Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631–1649 doi: 10.1162/neco.2008.04-07-510
|
HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554 doi: 10.1162/neco.2006.18.7.1527
|
FREUND Y and HAUSSLER D. Unsupervised learning of distributions on binary vectors using two layer networks[J]. Advances in Neural Information Processing Systems, 1992, 4: 912–919.
|
PETERSON C and ANDERSON J R. A mean field theory learning algorithm for neural networks[J]. Complex Systems, 1987, 1: 995–1019.
|
RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533–536 doi: 10.1038/323533a0
|
DECOSTE D and SCHOELKOPF B. Training invariant support vector machines[J]. Machine Learning, 2002, 46: 161–190.
|
郭继昌, 张帆, 王楠. 基于Fisher约束和字典对的图像分类[J]. 电子与信息学报, 2017, 39(2): 270–277 doi: 10.11999/JEIT160296
GUO Jichang, ZHANG Fan, and WANG Nan. Image classification based on Fisher constraint and dictionary pair[J]. Journal of Electronics&Information Technology, 2017, 39(2): 270–277 doi: 10.11999/JEIT160296
|
付晓, 沈远彤, 付丽华, 等. 基于特征聚类的稀疏自编码快速算法[J]. 电子学报, 2018, 46(5): 1041–1046 doi: 10.3969/j.issn.0372-2112.2018.05.003
FU Xiao, SHEN Yuan-tong, FU Li-hua, et al. An optimized sparse auto-encoder network based on feature clustering[J]. Acta Electronica Sinica, 2018, 46(5): 1041–1046 doi: 10.3969/j.issn.0372-2112.2018.05.003
|
李倩玉, 蒋建国, 齐美彬. 基于改进深层网络的人脸识别算 法[J]. 电子学报, 2017, 45(3): 619–625 doi: 10.3969/j.issn.0372-2112.2017.03.017
LI Qianyu, JIANG Jianguo, and QI Meibin. Face recognition algorithm based on improved deep networks[J]. Acta Electronica Sinica, 2017, 45(3): 619–625 doi: 10.3969/j.issn.0372-2112.2017.03.017
|