Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Huihui SHEN, Hongwei LI. An Improved Algorithm of Product of Experts System Based on Restricted Boltzmann Machine[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2173-2181. doi: 10.11999/JEIT170880
Citation: Huihui SHEN, Hongwei LI. An Improved Algorithm of Product of Experts System Based on Restricted Boltzmann Machine[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2173-2181. doi: 10.11999/JEIT170880

An Improved Algorithm of Product of Experts System Based on Restricted Boltzmann Machine

doi: 10.11999/JEIT170880
Funds:  The Science and Technology Research Program Key Project of Hubei Provincial Education Department (D20182203)
  • Received Date: 2017-09-18
  • Rev Recd Date: 2018-05-24
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • Deep learning has a strong ability in the high-dimensional feature vector information extraction and classification. But the training time of deep learning is so long that the optimal hyper-parameters combination can not be found in a short time. To solve these problems, a method of product of experts system based on Restricted Boltzmann Machine (RBM) is proposed. The product of experts theory is combined with the RBM algorithm and the parameter updating way is all adopted the probability value, which leads to the undesirable recognition effect and slightly worse density models, so the parameter updating way is improved. An improved algorithm with momentum terms in different combinations is used not only in the RBM pre-training phase but also in the fine-tuning stage for both classification accuracy enhancement and training time decreasing. Through the recognition experiments on the MNIST database and CMU-PIE face database, the proposed algorithm reduces the training time, and improves the efficiency of hyper-parameters optimization, and then the deep belief network can achieve better classification performance. The result shows that the improved algorithm can improve both accuracy and computation efficiency in dealing with high-dimensional and large amounts of data, the new method is effective.
  • loading
  • LIAO S H. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems with Applications, 2005, 28: 93–103 doi: 10.1016/j.eswa.2004.08.003
    VUNDAVILLI PANDU R, PHANI KUMAR J, SAI PRIYATHAM CH, et al. Neural network-based expert system for modeling of tube spinning process[J]. Neural Computing and Application, 2015, 26(6): 1481–1493 doi: 10.1007/s00521-015-1820-4
    MAYRAZ G and HINTON G E. Recognizing handwritten digits using hierarchical products of experts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 189–197 doi: 10.1109/34.982899
    焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(1): 1–21 doi: 10.11897/SP.J.1016.2016.01697

    JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Neural network in seventy: Retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(1): 1–21 doi: 10.11897/SP.J.1016.2016.01697
    HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1711–1800 doi: 10.1162/089976602760128018
    罗剑江, 王振友. 一种提高受限玻尔兹曼机性能的反正切函数逼近L0范数方法[J]. 小型微型计算机系统, 2016(11): 2562–2566

    LUO Jianjiang and WANG Zhenyou. Enhancing performance of restricted Boltzmann machine using Arctan approximation of L0 norm[J]. Journal of Chinese Computer Systems, 2016(11): 2562–2566
    王岳青, 窦勇, 吕启, 等. 基于异构体系结构的并行深度学习编程框架[J]. 计算机研究与发展, 2016, 53(6): 1202–1210 doi: 10.7544/issn1000-1239.2016.20150147

    WANG Yueqing, Dou Yong, Lü Qi, et al. A parallel deep learning programming framework based on heterogeneous architecture[J]. Journal of Computer Research and Development, 2016, 53(6): 1202–1210 doi: 10.7544/issn1000-1239.2016.20150147
    ZHANG Chunyang, CHEN Philip, CHEN Dewang, et al. MapReduce based distributed learning algorithm for Restricted Boltzmann Machine[J]. Neurocomputing, 2016(198): 4–11 doi: 10.1016/j.neucom.2015.09.129
    POLYAK T. Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1–17 doi: 10.1016/0041-5553(64)90137-5
    SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]. Proceedings of International Conference on Machine Learning, Atlanta, USA, 2013: 1139–1147.
    ZAREBA S, GONCZAREK A, TOMCZAK J M, et al. Accelerated learning for restricted Boltzmann machine with momentum term[C]. Proceedings of International Conference on Systems Engineering, Coventry, UK, 2015: 187–192.
    YUAN Kun, YING Bicheng, and SAYED A H. On the influence of momentum acceleration on online learning[J]. Journal of Machine Learning Research, 2016(17): 1–66.
    HINTON G E. A practical guide to training restricted Boltzmann machines[R]. Toronto: Machine Learning Group, University of Toronto, 2012: 599–619.
    FISCHER A and CHRISTIAN I. Training restricted Boltzmann machines: An introduction[J]. Pattern Recognition, 2014, 47: 25–39. doi: 10.1007/s13218-015-0371-2
    SMOLENSKY P. Information Processing in Dynamical Systems: Foundations of Harmony Theory[M]. Cambridge, MA: MIT Press, 1986: 195–280.
    ROUX N L and BENGIO Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631–1649 doi: 10.1162/neco.2008.04-07-510
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554 doi: 10.1162/neco.2006.18.7.1527
    FREUND Y and HAUSSLER D. Unsupervised learning of distributions on binary vectors using two layer networks[J]. Advances in Neural Information Processing Systems, 1992, 4: 912–919.
    PETERSON C and ANDERSON J R. A mean field theory learning algorithm for neural networks[J]. Complex Systems, 1987, 1: 995–1019.
    RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533–536 doi: 10.1038/323533a0
    DECOSTE D and SCHOELKOPF B. Training invariant support vector machines[J]. Machine Learning, 2002, 46: 161–190.
    郭继昌, 张帆, 王楠. 基于Fisher约束和字典对的图像分类[J]. 电子与信息学报, 2017, 39(2): 270–277 doi: 10.11999/JEIT160296

    GUO Jichang, ZHANG Fan, and WANG Nan. Image classification based on Fisher constraint and dictionary pair[J]. Journal of Electronics&Information Technology, 2017, 39(2): 270–277 doi: 10.11999/JEIT160296
    付晓, 沈远彤, 付丽华, 等. 基于特征聚类的稀疏自编码快速算法[J]. 电子学报, 2018, 46(5): 1041–1046 doi: 10.3969/j.issn.0372-2112.2018.05.003

    FU Xiao, SHEN Yuan-tong, FU Li-hua, et al. An optimized sparse auto-encoder network based on feature clustering[J]. Acta Electronica Sinica, 2018, 46(5): 1041–1046 doi: 10.3969/j.issn.0372-2112.2018.05.003
    李倩玉, 蒋建国, 齐美彬. 基于改进深层网络的人脸识别算 法[J]. 电子学报, 2017, 45(3): 619–625 doi: 10.3969/j.issn.0372-2112.2017.03.017

    LI Qianyu, JIANG Jianguo, and QI Meibin. Face recognition algorithm based on improved deep networks[J]. Acta Electronica Sinica, 2017, 45(3): 619–625 doi: 10.3969/j.issn.0372-2112.2017.03.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (1973) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return