Advanced Search
Volume 40 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
ZOU Kun, LUO Yanbo, LI Wei, LI Hailin. Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834
Citation: ZOU Kun, LUO Yanbo, LI Wei, LI Hailin. Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834

Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments

doi: 10.11999/JEIT170834
Funds:

The National Natural Science Foundation of China (61571456), The Natural Science Foundation of Shaanxi Province (2016JM0644)

  • Received Date: 2017-08-30
  • Rev Recd Date: 2018-03-02
  • Publish Date: 2018-07-19
  • The most important characteristic of the complex electromagnetic environment is the limitation of the radio frequency resource. As a result, the smart use of the limiting spectral resource is necessary to the waveform design for the cognitive radar. This paper designs the transmit waveform under the Peak to Average power Ratio (PAR), to maximize the Signal to Noise power Ratio (SNR) at the receiver, and simultaneously, minimize the power of the waveform in the interference frequency bands. The waveform design problem is a quadratically constrained multi-objective optimization problem. Exploiting the Pareto optimization method, the one objective function is obtained by weighted sum of the two ones, and the resultant problem reduces into a Quadratically Constrained Quadratic Program (QCQP). In order to solve it, the SemiDefinite Program (SDP) relaxation and randomization are used to achieve the optimal waveform, whose performance is related to the Pareto weights and the PAR constraint. The computer simulation results show that, there is a restrictive relationship between the SNR and interference suppression ability for the waveform design, and the performance can be improved by increasing the dynamic range of the transmitter.
  • loading
  • [2] TAYLOR J D. Ultra-wideband Radar Technology[M]. Florida: CRC Press LLC, 2001, Chapter 12.
    GRIFFITHS H, WATTS S, and WICKS M. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85-102. doi: 10.1109/JPROC.2014.2365517.
    [3] LINDENFELD M J. Sparse frequency transmit and receive waveform design[J]. IEEE Transactions on Aerospace and Electronic System, 2004, 40(3): 851-861. doi: 10.1109/TAES. 2004.1337459.
    [4] STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar and Navigation, 2016, 10(3): 595-602. doi: 10.1049/iet-rsn.2015. 0372.
    [5] STINCO P, GRECO M, and GINI F. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20-27. doi: 10.1109/MAES.2016.150193.
    [6] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-40. doi: 10.1109/MAES.2016. 160071.
    [7] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2): 1138-1152. doi: 10.1109/ TAES.2014.120731.
    [8] AI W, HUANG Y, and ZHANG S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, Series A, 2011, 128(1/2): 253-283. doi: 10.1007 /s10107-009-0304-7.
    [9] AUBRY A, DE MAIO A, HUANG Y, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic System, 2015, 50(2): 1029-1038. doi: 10.1109/ TAES.2014.140093.
    [10] AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing, 2016, 23(4): 483-487. doi: 10.1109/LSP.2016.2532739.
    [11] LUO Zhiquan, MA WingKin, SO A M, et al. Semidefinite relaxation of quadratic optimization problems, from its practical deployments and scope of applicability to key theoretical results[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. doi: 10.1109/MSP.2010.936019.
    [12] GE Peng, CUI Guolong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar and Navigation, 2017, 11(5): 759-767. doi: 10.1049/iet-rsn.2016.0239.
    [13] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electron System Magazine, 2016, 31(12): 14-25. doi: 10.1109 /MAES.2016.150216.
    [14] DE MAIO A, PIEZZO M, FARINA A, et al. Pareto-optimal radar waveform design[J]. IET Radar, Sonar and Navigation, 2011, 5(4): 473-482. doi: 10.1049/iet-rsn.2010.0184.
    [15] DE MAIO A, HUANG Y, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697. doi: 10.1109/TSP.2011.2128313.
    [16] YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558-560. doi: 10.1049/el. 2016.4524.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1193) PDF downloads(307) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return