Citation: | ZOU Kun, LUO Yanbo, LI Wei, LI Hailin. Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834 |
[2] TAYLOR J D. Ultra-wideband Radar Technology[M]. Florida: CRC Press LLC, 2001, Chapter 12.
|
GRIFFITHS H, WATTS S, and WICKS M. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85-102. doi: 10.1109/JPROC.2014.2365517.
|
[3] LINDENFELD M J. Sparse frequency transmit and receive waveform design[J]. IEEE Transactions on Aerospace and Electronic System, 2004, 40(3): 851-861. doi: 10.1109/TAES. 2004.1337459.
|
[4] STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar and Navigation, 2016, 10(3): 595-602. doi: 10.1049/iet-rsn.2015. 0372.
|
[5] STINCO P, GRECO M, and GINI F. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20-27. doi: 10.1109/MAES.2016.150193.
|
[6] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-40. doi: 10.1109/MAES.2016. 160071.
|
[7] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2): 1138-1152. doi: 10.1109/ TAES.2014.120731.
|
[8] AI W, HUANG Y, and ZHANG S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, Series A, 2011, 128(1/2): 253-283. doi: 10.1007 /s10107-009-0304-7.
|
[9] AUBRY A, DE MAIO A, HUANG Y, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic System, 2015, 50(2): 1029-1038. doi: 10.1109/ TAES.2014.140093.
|
[10] AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing, 2016, 23(4): 483-487. doi: 10.1109/LSP.2016.2532739.
|
[11] LUO Zhiquan, MA WingKin, SO A M, et al. Semidefinite relaxation of quadratic optimization problems, from its practical deployments and scope of applicability to key theoretical results[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. doi: 10.1109/MSP.2010.936019.
|
[12] GE Peng, CUI Guolong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar and Navigation, 2017, 11(5): 759-767. doi: 10.1049/iet-rsn.2016.0239.
|
[13] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electron System Magazine, 2016, 31(12): 14-25. doi: 10.1109 /MAES.2016.150216.
|
[14] DE MAIO A, PIEZZO M, FARINA A, et al. Pareto-optimal radar waveform design[J]. IET Radar, Sonar and Navigation, 2011, 5(4): 473-482. doi: 10.1049/iet-rsn.2010.0184.
|
[15] DE MAIO A, HUANG Y, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697. doi: 10.1109/TSP.2011.2128313.
|
[16] YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558-560. doi: 10.1049/el. 2016.4524.
|