Advanced Search
Volume 40 Issue 5
May  2018
Turn off MathJax
Article Contents
YE Feng, HONG Siting, CHEN Jiazhen, ZHENG Zihua, LIU Guanghai. Salient Object Detection via Multi-feature Diffusion-based Method[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827
Citation: YE Feng, HONG Siting, CHEN Jiazhen, ZHENG Zihua, LIU Guanghai. Salient Object Detection via Multi-feature Diffusion-based Method[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827

Salient Object Detection via Multi-feature Diffusion-based Method

doi: 10.11999/JEIT170827
Funds:

The National Natural Science Foundation of China (61671077, 61463008), The Natural Science Foundation of Fujian Province (2017J01739), The Scientific Research Fund of Fujian Education Department (JA15136), The Teaching Reform Project of Fujian Normal University (I201602015)

  • Received Date: 2017-08-23
  • Rev Recd Date: 2018-01-11
  • Publish Date: 2018-05-19
  • Most existing salient object detection methods based on diffusion theory usually only use one feature of image to construct graph and diffusion matrix, and ignore the possibility that salient objects appear at the border regions of the image. In this paper, a diffusion method based on the multi-layer features of image is proposed to detect salient objects. Firstly, the seed nodes are selected by adopting the high-level prior method, which is composed of background prior, color prior, and location prior. Then, the initial saliency map is obtained by propagating the saliency information carried by the selected seed nodes to each nodes via the diffusion matrix constructed by the low-level feature of the image, and used as the middle-level feature of image. The diffusion matrices are re-synthesized again by the middle-level feature and the high-level feature of the image, and the middle-level saliency map and the high-level saliency map are obtained by the diffusion-based method respectively. The final saliency map is obtained by nonlinearly combining the the middle-level and high-level saliency map. Results on three datasets, MSRA10K, DUT-OMRON and ECSSD, show that the proposed method achieves superior performance compared with the four state-of-art methods in terms of three evaluation metrics.
  • loading
  • JERRIPOTHULA K R, CAI J, and YUAN J. Image Co-segmentation via saliency Co-fusion[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1896-1909. doi: 10.1109/TMM.2016.2576283.
    LUO P, TIAN Y, WANG X, et al. Switchable deep network for pedestrian detection[C]. IEEE Computer Vision and Pattern Recognition, Columbus, USA, 2014: 899-906. doi: 10.1109/CVPR.2014.120.
    ZHAO R, OUYANG W, and WANG X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013.460.
    LIU G H, YANG J Y, and LI Z Y. Content-based image retrieval using computational visual attention model[J]. Pattern Recognition, 2015, 48(8): 2554-2566. doi: 10.1016/ j.patcog.2015.02.005
    唐红梅, 吴士婧, 郭迎春, 等. 自适应阈值分割与局部背景线索结合的显著性检测[J]. 电子与信息学报, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984.
    TANG Hongmei, WU Shijing, GUO Yingchun, et al. Saliency detection based on adaptive threshold segmentation and local background clues[J]. Journal of Electronics Information Technology, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984.
    JIANG H, WANG J, YUAN Z, et al. Automatic salient object segmentation based on context and shape prior[C]. British Machine Vision Conference, Dundee, UK, 2011: 110.1-110.12. doi: 10.5244/C.25.110.
    WANG L, WANG L, LU H, et al. Saliency detection with recurrent fully convolutional networks[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 825-841. doi: 10.1007/978-3-319-46493-0_50.
    YANG J and YANG M H. Top-down visual saliency via joint CRF and dictionary learning[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(3): 576-588. doi: 10.1109/TPAMI.2016.2547384.
    HU P and RAMANAN D. Bottom-up and top-down reasoning with hierarchical rectified gaussians[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5600-5609. doi: 10.1109/CVPR.2016. 604.
    PERAZZI F, Krhenbhl P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. IEEE Computer Vision and Pattern Recognition, Rhode Island, 2012: 733-740. doi: 10.1109/CVPR.2012. 6247743.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1155-1162. doi: 10.1109/ CVPR.2013.153.
    WANG Q, ZHENG W, and PIRAMUTHU R. GraB: Visual saliency via novel graph model and background priors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 535-543. doi: 10.1109/ CVPR.2016.64.
    ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    HAREL J, KOCH C, and PERONA P. Graph-based visual saliency[C]. International Conference on Neural Information Processing Systems, Vancouver, Canada, 2006: 545-552. doi: 10.1.1.70.2254.
    QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]. IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 110-119. doi: 10.1109/ CVPR.2015.7298606.
    YU J G, XIA G S, GAO C, et al. A computational model for object-based visual saliency: Spreading attention along gestalt cues[J]. IEEE Transactions on Multimedia, 2016, 18(2): 273-286. doi: 10.1109/TMM.2015.2505908.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    JIANG P, VASCONCELOS N, and PENG J. Generic promotion of diffusion-based salient object detection[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 217-225. doi: 10.1109/ICCV.2015.33.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI.2012.120.
    LUXBURG U V. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. doi: 10.1007/ s11222-007-9033-z.
    PENG H, LI B, LING H, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(4): 818-832. doi: 10.1109/TPAMI.2016.2562626.
    WU Y. A unified approach to salient object detection via low rank matrix recovery[C]. IEEE Computer Vision and Pattern Recognition, Rhode Island, 2012: 853-860. doi: 10.1109/ CVPR.2012.6247758.
    ZHANG Lihe, YANG C, LU H, et al. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892-1904. doi: 10.1109/TPAMI. 2016.2609426.
    Borji A, CHENH Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[C]. IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 5706-5722. doi: 10.1109/TIP.2015.2487833.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1481) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return