Advanced Search
Volume 40 Issue 5
May  2018
Turn off MathJax
Article Contents
ZHOU Mu, LIU Yiyao, YANG Xiaolong, ZHANG Qiao, TIAN Zengshan. Indoor Mobility Map Construction and Localization Based on Wi-Fi Simultaneous Localization and Mapping Pixel Template Matching[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1050-1058. doi: 10.11999/JEIT170781
Citation: ZHOU Mu, LIU Yiyao, YANG Xiaolong, ZHANG Qiao, TIAN Zengshan. Indoor Mobility Map Construction and Localization Based on Wi-Fi Simultaneous Localization and Mapping Pixel Template Matching[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1050-1058. doi: 10.11999/JEIT170781

Indoor Mobility Map Construction and Localization Based on Wi-Fi Simultaneous Localization and Mapping Pixel Template Matching

doi: 10.11999/JEIT170781
Funds:

The National Natural Science Foundation of China (61301126, 61471077), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of CSTC Key Laboratory, The Fundamental Science and Frontier Technology Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221)

  • Received Date: 2017-08-04
  • Rev Recd Date: 2018-01-08
  • Publish Date: 2018-05-19
  • This papers propose a novel integrated Wi-Fi and Micro Electronic Mechanical Systems (MEMS) indoor mobility map construction and localization approach. First of all, a method is proposed for constructing mobility map based on trajectory main path by applying the Pedestrian Dead Reckoning (PDR), Minimum Description Length (MDL), and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms to the processing process of crowdsourcing trajectories. Then a pixel template matching technique is innovatively presented to obtain the absolute position of the map. Finally, the robust Extended Kalman Filter (EKF) algorithm is utilized to estimate the optimal target position. Which means the Simultaneous Localization And Mapping (SLAM) are completed. The experimental results show that the method of proposed clustering can accurately distinguish the motion regions. Also, the precision positioning can be realized with less labor and time through matching the absolute position of the motion map in the real environment successfully.
  • loading
  • KANG W, GAO S, WANG H, et al. Multi-modal signal propagation model based on time reversal method[C]. IEEE International Conference on Electronic Measurement Instruments, Qingdao, China, 2016: 958-963. doi: 10.1109/ ICEMI.2015.7494364.
    LEE J Y, KIM H S, CHOI K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1): 63-75. doi: 10.1007/s10291-015-0446-4.
    EICHHARDT I, JANKO Z, and CHETVERIKOV D. Novel methods for image-guided ToF depth upsampling[C]. IEEE International Conference on Systems, Man Cybernetics, Budapest, Hungary, 2017: 2073-2078. doi: 10.1109/SMC. 2016.7844545.
    ZHU D, CHOI J, and HEATH R W. Auxiliary beam pair enabled AoD and AoA estimation in mmWave FD-MIMO systems[C]. Global Communications Conference, Washington, DC USA, 2016: 1-6. doi: 10.1109/GLOCOM.2016.7841616.
    PAK J M, AHN C K, PENG S, et al. Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA based localization using wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5182-5191. doi: 10.1109/TIE.2016.2608897.
    CHO H and KWON Y. RSS-based indoor localization with PDR location tracking for wireless sensor networks[J]. AEU- International Journal of Electronics and Communications, 2016, 70(3): 250-256. doi: 10.1016/j.aeue.2015.12.004.
    YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C] International Conference on Mobile Systems, Applications Services, Washington, USA, 2005: 205-218. doi: 10.1145/1067170.1067193.
    TIAN Z, FANG X, ZHOU M, et al. Smartphone-based indoor integrated WiFi/MEMS positioning algorithm in a multi- floor environment[J]. Micromachines, 2015, 6(3): 347-363. doi: 10.3390/mi6030347.
    ZHOU M, TANG Y, NIE W, et al. GrassMA: Graph-based semi-supervised manifold alignment for indoor WLAN localization[J]. IEEE Sensors Journal, 2017, 17(21): 7086-7095. doi: 10.1109/JSEN.2017.2752844.
    陈岭, 许晓龙, 杨清, 等. 基于三次样条插值的无线信号强度衰减模型[J]. 浙江大学学报(工学版), 2011, 45(9): 1521-1527. doi: 10.3785 /j.issn.1008-973X.2011.09.003.
    CHEN Ling, XU Xiaolong, YANG Qing, et al. Wireless signal strength propagation model base on cubic spline interpolation[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(9): 1521-1527. doi: 10.3785/j.issn.1008- 973X.2011.09.003.
    LI B, WANG Y, LEE H K, et al. Method for yielding a database of location fingerprints in WLAN[J]. IEE Proceedings Communications, 2005, 152(5): 580-586. doi: 10.1049/ip-com:20050078.
    DING M, WANG P, LOPEZ P D, et al. Performance impact of LoS and NLoS transmissions in dense cellular networks [J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2365-2380. doi: 10.1109/TWC.2015.2503391.
    ANGERMANN M and ROBERTSON P. FootSLAM: Pedestrian simultaneous localization and mapping without exteroceptive sensors hitchhiking on human perception and cognition[J]. Proceedings of the IEEE, 2012, 100(5): 1840-1848. doi: 10.1109/JPROC.2012.2189785.
    BRUNO L and ROBERTSON P. WiSLAM: Improving FootSLAM with WiFi[C]. International Conference on Indoor Positioning and Indoor Navigation, Guimares, Portugal, 2011: 1-10. doi: 10.1109/IPIN.2011.6071916.
    KOO B, LEE S, LEE M, et al. PDR/fingerprinting fusion indoor location tracking using RSS recovery and clustering[C]. International Conference on Indoor Positioning and Indoor Navigation, Alberta, Canada, 2015: 699-704. doi: 10.1109/ IPIN.2014.7275546.
    GOEBL S, TONCH A, BOHM C, et al. MeGS: Partitioning meaningful subgraph structures using minimum description length[C]. IEEE International Conference on Data Mining, New Orleans, USA, 2017: 889-894. doi: 10.1109/ICDM. 2016.0108.
    ZHOU R, ZHANG S, CHEN C, et al. A distance and density-based clustering algorithm using automatic peak detection[C]. IEEE International Conference on Smart Cloud, New York, USA, 2016: 176-183. doi: 10.1109/SmartCloud. 2016.39.
    ZHAO L, QIU H, and FENG Y. Analysis of a robust Kalman filter in loosely coupled GPS/INS navigation system[J]. Measurement, 2016, 80: 138-147. doi: 10.1016/j.measurement. 2015.11.008.
    NIWATTANAKUL S, SINGTHONGCHAI J, NAENUDORN E, et al. Using of Jaccard Coefficient for Keywords Similarity[J]. Lecture Notes in Engineering and Computer Science, 2013, 2202(1): 380-384. doi: ISBN978- 988-19251-8-3.
    TIAN Z, JIN Y, ZHOU M, et al. Wi-Fi/MARG integration for indoor pedestrian localization[J]. Sensors, 2016, 16(12): 2100-2013. doi: 10.3390/s16122100.
    LEE J G, HAN J, and WHANG K Y. Trajectory clustering: A partition-and-group framework[C]. ACM SIGMOD International Conference on Management of Data, Beijing, China, 2007: 593-604. doi: 10.1145/1247480.1247546.
    WU C, YANG Z, ZHOU Z, et al. Mitigating large errors in WiFi-based indoor localization for smartphones[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 6246-6257. doi: 10.1109/TVT.2016.2630713.
    CHOI K H, YONG H K, YOON T S, et al. Robust least squares algorithm based position and heading estimator by using range difference measurement and heading sensor[C]. IEEE Conference on Decision and Control, Georgia, USA, 2012: 1996-2001. doi: 10.1109/CDC.2012.6425914.
    ZHANG X, JIN Y, TAN H X, et al. CIMLoc: A crowdsourcing indoor digital map construction system for localization[C]. IEEE Sensor Networks and Information Processing, Berlin Germany, 2014: 1-6. doi: 10.1109/ ISSNIP.2014.6827640.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1711) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return