Advanced Search
Volume 40 Issue 5
May  2018
Turn off MathJax
Article Contents
CHEN Lu, BI Daping, PAN Jifei. A Direction of Arrial Estimation Algorithm for Translational Nested Array Besed on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1173-1180. doi: 10.11999/JEIT170737
Citation: CHEN Lu, BI Daping, PAN Jifei. A Direction of Arrial Estimation Algorithm for Translational Nested Array Besed on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1173-1180. doi: 10.11999/JEIT170737

A Direction of Arrial Estimation Algorithm for Translational Nested Array Besed on Sparse Bayesian Learning

doi: 10.11999/JEIT170737
Funds:

The National Natural Science Foundation of China (61671453), The Natural Science Foundation of Anhui Province (1608085MF123)

  • Received Date: 2017-07-20
  • Rev Recd Date: 2018-01-30
  • Publish Date: 2018-05-19
  • The performance of direction finding for nested array degrades due to the mutual coupling effect among the elements. Two different translational nested array structures are proposed. In order to ensure that the virtual array has no holes, a translational nested array is formed by adjusting the positions of the original two level nested array elements. It improves the sparsity of the original two level nested array, reduces the mutual coupling effect, and extends the direction finding freedom of the original nested array. Under the condition of unknown number of spatial radiation sources, a Sparse Bayesian Learning (SBL) model for translational nested array is established. Through this model, the received data of the virtual array is processed, the DOA estimation is obtained and the direction finding performance of the original nested array direction finding algorithm is effectively improved. Simulation results show that the translational nested array has higher degree of freedom than the original nested array. Under the scenarios of low Signal-to-Noise Ratio (SNR), snapshot deficiency, and mutual coupling effect, the performance of direction finding algorithm for translational nested array based on Sparse Bayesian Learning is better than that of direction finding algorithm for the original nested array. The angle resolution of direction finding algorithm for the original nested array is improved.
  • loading
  • PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181. doi: 10.1109/TSP.2010.2049264.
    PAL P and VAIDYANATHAN P P. Nested arrays in two dimensions, part I: Geometrical considerations[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4694-4705. doi: 10.1109/TSP.2012.2203814.
    HAN K Y and NEHORAI A. Nested array processing for distributed sources[J]. IEEE Signal Processing Letters, 2014, 21(9): 1111-1114. doi: 10.1109/LSP.2014.2325000.
    HAN K Y and NEHORAI A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 6118-6128. doi: 10.1109/TSP.2013. 2283462.
    LIU C L and VAIDYANATHAN P P. Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3369-3383. doi: 10.1109/TSP.2017.2690390.
    ROCCA P, HAN M, SALUCCI M, et al. Single-snapshot DOA estimation in array antennas with mutual coupling through a multi-scaling Bayesian compressive sensing strategy[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3203-3213. doi: 10.1109/TAP.2017.2684137.
    AKSOY T and TUNCER T E. Measurement reduction for mutual coupling calibration in DOA estimation[J]. Radio Science, 2012, 47(3): 1-9. doi: 10.1029/2011RS004904.
    DAI J, BAO X, HU N, et al. A recursive rare algorithm for DOA estimation with unknown mutual coupling[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1593-1596. doi: 10.1109/LAWP.2014.2347056.
    MAO W, LI G, XIE X, et al. DOA estimation of coherent signals based on direct data domain under unknown mutual coupling[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1525-1528. doi: 10.1109/LAWP.2014.2343671.
    DAI J, ZHAO D, and JI X. A sparse representation method for DOA estimation with unknown mutual coupling[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1210-1213. doi: 10.1109/LAWP.2012.2223651.
    LIAO B, ZHANG Z G, and CHAN S C. DOA estimation and tracking of ULAs with mutual coupling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 891-905. doi: 10.1109/TAES.2012.6129676.
    LIU C L and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual couplingPart I: Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3997-4012. doi: 10.1109/TSP.2016.25581592015.
    QIAN C, HUANG L, and SO H C. Improved unitary root- MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144. doi: 10.1109/LSP.2013.2294676.
    YAN F, JIN M, and QIAO X. Low-complexity DOA estimation based on compressed MUSIC and its performance analysis[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1915-1930. doi: 10.1109/TSP.2013.2243442.
    LIN J, MA X, YAN S, et al. Time-frequency multi-invariance ESPRIT for DOA estimation[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 770-773. doi: 10.1109 /LAWP.2015.2473664.
    ABRAMOVICH Y I and JOHNSON B A. Detection- estimation of very close emitters: Performance breakdown, ambiguity, and general statistical analysis of maximum- likelihood estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3647-3660. doi: 10.1109/TSP.2010. 2047334.
    FANG J, LI J, SHEN Y, et al. Super-resolution compressed sensing: An iterative reweighted algorithm for joint parameter learning and sparse signal recovery[J]. IEEE Signal Processing Letters, 2014, 21(6): 761-765. doi: 10.1109/LSP.2014.2316004.
    .[18] HU R, FU Y, CHEN Z, et al. Robust DOA estimation via sparse signal reconstruction with impulsive noise[J]. IEEE Communications Letters, 2017, 21(6): 1333-1336. doi: 10.1109/LCOMM.2017.2675407.
    HAWES M, MIHAYLOVA L, SEPTIER F, et al. Bayesian compressive sensing approaches for direction of arrival estimation with mutual coupling effects[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1357-1368. doi: 10.1109/TAP.2017.2655013.
    YANG X, CHI C K, and ZHENG Z. Direction-of-arrival estimation of incoherently distributed sources using Bayesian compressive sensing[J]. IET Radar, Sonar Navigation, 2016, 10(6): 1057-1064. doi: 10.1049/iet-rsn.2015.0336.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1237) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return