Citation: | ZHU Shixin, HUANG Shan, LI Jin. Constacyclic Hermitian Dual-containing Codes over Finite Fields and Their Application[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1072-1078. doi: 10.11999/JEIT170735 |
CALDERBANK A R, RAINS E M, SHOR P W, et al. Quantum error correction via codes over [J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369-1387. doi: 10.1109/18.681315.
|
ASHIKHMIN A and KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065-3072. doi: 10.1109/18.959298.
|
ALY S A, KLAPPENECKER A, and SARVEPALLI P K. On quantum and classical BCH codes[J]. IEEE Transactions on Information Theory, 2007, 53(3): 1183-1188. doi: 10.1109/ TIT.2006.890730.
|
MA Z, LU X, FENG K, et al. On non-binary quantum codes[C]. International Conference on Theory and Applications of Models of Computation, Berlin Heidelberg, 2006: 675-683. doi: 10.1007/1175 0321_63.
|
XU Y, MA Z, and ZHANG C. On classical BCH codes and quantum BCH codes[J]. Journal of Electronics, 2009, 26(1): 64-70. doi: 10.1007/s11767-007-0120-2.
|
GUARDIA G G L. New families of asymmetric quantum BCH codes[J]. Quantum Information and Computation, 2011, 11(3): 239-252.
|
TANG Y, ZHU S, KAI X, et al. New quantum codes from dual-containing cyclic codes over finite fings[J]. Quantum Information Processing, 2016, 15(11): 4489-4500. doi: 10.1007/s11128-016-1426-5.
|
GUARDIA G G L. Quantum codes defived from cyclic codes[J]. International Journal of Theoretical Physics, 2017, 56(8): 2479-2484. doi: 10.1007/s10773-017 -3399-2.
|
GUARDIA G G L. On optimal constacyclic codes[J]. Linear Algebra and Its Applications, 2016, 496: 594-610. doi: 10.1016 /j.laa.2016.02.014.
|
LIN X. Quantum cyclic and constacyclic codes[J]. IEEE Transactions on Information Theory, 2004, 50(3): 547-549. doi: 10.1109/TIT.2004.825502.
|
KAI X, ZHU S, and TANG Y. Quantum negacyclic codes[J]. Physical Review A, 2013, 88: 012326. doi: 10.1103/PhysRevA. 88.012326.
|
XU G, LI R, GUO L, et al. New quantum codes constructed from quaternary BCH codes[J]. Quantum Information Processing, 2016, 15(10): 4099-4116. doi: 10. 1007/s11128- 016-1397-6.
|
YUAN J, ZHU S, KAI X, et al. On the construction of quantum constacyclic codes[J]. Designs Codes and Cryptography, 2017, 85(1): 179-190. doi: 10. 1007/s10623-016 -0296-2.
|
LIU Y, LI R, L L, et al. A class of constacyclic BCH codes and new quantum codes[J]. Quantum Information Processing, 2017, 16(3): 66. doi: 10.1007/s11128-017-1533-y.
|
XU G, LI R, and GUO L. New optimal asymmetric quantum codes constructed from constacyclic codes[J]. International Journal of Modern Physics B, 2017, 31(5): 1750030. doi: 10.1142/S0217979217500308.
|
KRISHNA A and SARWATE D V. Pseudocyclic maximum- distance-separable codes[J]. IEEE Transactions on Information Theory, 1990, 36(4): 880-884. doi: 10.1109/ 18.53751.
|