Advanced Search
Volume 40 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
JIN Liangnian, FENG Fei, LIU Qinghua, OUYANG Shan. Building Layout Imaging Method Using the Inter-block Coupling Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(4): 853-859. doi: 10.11999/JEIT170719
Citation: JIN Liangnian, FENG Fei, LIU Qinghua, OUYANG Shan. Building Layout Imaging Method Using the Inter-block Coupling Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(4): 853-859. doi: 10.11999/JEIT170719

Building Layout Imaging Method Using the Inter-block Coupling Sparse Bayesian Learning

doi: 10.11999/JEIT170719
Funds:

The National Natural Science Foundation of China (61461012), Guangxi Natural Science Foundation (2017GXNSFAA198050), Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, 2016 the Fund Project of Diretor (GXKL06160106)

  • Received Date: 2017-07-19
  • Rev Recd Date: 2017-12-25
  • Publish Date: 2018-04-19
  • In through-wall radar building layout imaging, the existing extended target sparse imaging method can not effectively exploit the structural sparsity of the wall reflections in the scene, resulting in incoherent imaging and unobvious contour of walls. A sparse Bayesian learning method is proposed for building layout imaging by exploiting the inter-block coupling of sparse signal. On the basis of the hierarchical Gaussian prior model of block sparse signal characteristics, the inter-block coupling coefficient is further used to characterize the structured sparsity of the wall reflections. Then these coefficients are introduced into the hyperparameters controlling the prior distribution of sparse signal, thus this structured sparsity is transformed into the coupling relationship of these hyperparameters. Susequently, an Expectation-Maximization (EM) algorithm is developed to infer the Maximum A Posterior (MAP) estimate of these hyperparameters. The results of simulation and experiment show that the proposed method improves effectively the imaging quality of the building wall.
  • loading
  • BOUZERDOUM A, TANG V H, and PHUNG S L. A low-rank and jointly-sparse approach for multipolarization through-wall radar imaging[C]. IEEE Radar Conference (RadarConf), Seattle, 2017: 0263-0268. doi: 10.1109/ RADAR.2017.7944209.
    WANG Xueqian, LI Gang, Wan Qun, et al. Look-ahead hybrid matching pursuit for multipolarization through-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4072-4081. doi: 10.1109/TGRS. 2017.2687478.
    JIA Yong, CUI Guolong, KONG Lingjiang, et al. Multichannel and multiview imaging approach to building layout determination of through-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 970-974. doi: 10.1109/LGRS.2013. 2283778.
    LU Biying, JIN Tian, WANG Wu, et al. Building layout imaging in through-the-wall MIMO applications[C]. IET International Radar Conference, Hangzhou, 2015: 1-5. doi: 10.1049/cp.2015.1326.
    LAGUNAS E, AMIN M G, AHMAD F, et al. Determining building interior structures using compressive sensing[J]. Journal of Electronic Imaging, 2013, 22(2): 021003. doi: 10.1117/1.JEI.22.2. 021003.
    ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    FANG Jun, SHEN Yanning, LI Hongbin, et al. Pattern- coupled sparse Bayesian learning for recovery of block-sparse signals[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 360-372. doi: 10.1109/TSP.2014.2375133.
    WU Qisong, ZHANG Yimin, AMIN M G, et al. Multi-task bayesian compressive sensing exploiting intra-task dependency[J]. IEEE Signal Processing Letters, 2015, 22(4): 430-434. doi: 10.1109/LSP.2014.2360688.
    DUAN Huiping, ZHANG Lizao, FANG Jun, et al. Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging[J]. IEEE Signal Processing Letters, 2015, 22(11): 1995-1999. doi: 10.1109/LSP.2015. 2452412.
    张燕, 晋良念. 结合TV约束的穿墙雷达扩展目标成像方法[J]. 雷达科学与技术, 2017, 15(3): 229-235. doi: 10.3969/ j.issn.1672-2337.2017.03.001.
    ZHANG Yan and JIN Liangnian. Extended target through walls radar imaging with TV constraints[J]. Radar Science and Technology, 2017, 15(3): 229-235. doi: 10.3969/j.issn. 1672-2337.2017.03.001.
    CHEN Yijun, ZHANG Qun, LUO Ying, et al. Measurement matrix optimization for ISAR sparse imaging based on genetic algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1875-1879. doi: 10.1109/LGRS.2016. 2616352.
    ZHANG Zhilin and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
    TIVIVE F H C, BOUZERDOUM A, and AMIN M G. A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2108-2122. doi: 10.1109/TGRS.2014. 2355211.
    YANG Jungang, HUANG Xiaotao, THOMPSON J, et al. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608-4620. doi: 10.1109/TGRS.2013. 2283054.
    晋良念, 申文婷, 钱玉彬, 等. 组合字典下超宽带穿墙雷达自适应稀疏成像方法[J]. 电子与信息学报, 2016, 38(5): 1047-1054. doi: 10.11999/JEIT150884.
    JIN Liangnian, SHEN Wenting, QIAN Yubin, et al. Adaptive sparse imaging approach for ultra-wideband through-the-wall radar in combined dictionaries[J]. Journal of Electronics Information Technology, 2016, 38(5): 1047-1054. doi: 10.11999/JEIT150884.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1226) PDF downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return