Advanced Search
Volume 40 Issue 5
May  2018
Turn off MathJax
Article Contents
CUI Weijia, DAI Zhengliang, BA Bin, LU Hang. Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663
Citation: CUI Weijia, DAI Zhengliang, BA Bin, LU Hang. Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663

Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition

doi: 10.11999/JEIT170663
Funds:

The National Natural Science Foundation of China (61401513)

  • Received Date: 2017-07-06
  • Rev Recd Date: 2017-12-11
  • Publish Date: 2018-05-19
  • In the Direction Of Arrival (DOA) estimation of incoherently distributed noncircular sources, the increase of dimension caused by array output matrix extension can cause a large computational complexity. To solve this problem, a rapid DOA estimation algorithm is proposed based on cross-correlation sampling decomposition. It only needs to calculate two low-dimensional sub-matrices, which are formed by a small number of rows and columns in the extended Cross-Correlation (CC) matrix. On the premise of the sub-matrices, the right and left singular vectors corresponding to two signal subspaces can be simultaneously obtained by the low-rank approximation decomposition, which avoids the calculation of the whole covariance matrix and its singular value decomposition. Finally, the DOA estimation can be obtained by the least squares with the rotation invariance of the signal subspaces. The simulation results show that when the number of samples in the low-dimensional sub-matrix is larger than twice the number of sources, the performance of the proposed algorithm is comparable with the DOA estimation algorithm of incoherently distributed noncircular sources based on the singular value decomposition applying to the CC matrix. Moreover, the proposed algorithm utilizes the noncircular characteristic of the signal to achieve higher estimation performance compared with the traditional low-complexity DOA estimation algorithms of the incoherently distributed sources.
  • loading
  • KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/ 79.526899.
    樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    FAN Jinyu, GU Hong, Su Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics Information Technology, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    梁浩, 崔琛, 余剑. 基于ESPRIT算法的十字型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2016, 38(1): 80-89. doi: 10.11999/JEIT150402.
    LIANG Hao, CUI Chen, and YU Jian. Reduced-dimensional DOA estimation based on ESPRIT algorithm in monostatic MIMO Radar with cross array[J]. Journal of Electronics Information Technology, 2016, 38(1): 80-89. doi: 10.11999/ JEIT150402.
    郑植. 分布式信源低复杂度参数估计算法研究[D]. [博士论文], 电子科技大学, 2011.
    ZHENG Zhi. Research on low complexity parameter estimation algorithm for distributed source[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2011.
    L T, TAN F, GAO H, et al. A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems[J]. Signal Processing, 2016, 121(C): 30-45. doi: 10.1016/j.sigpro.2015.10.020.
    XIONG W, PICHERAL J, and MARCOS S. Array geometry impact on music in the presence of spatially distributed sources[J]. Digital Signal Processing, 2017, 63: 155-163. doi: 10.1016/j.dsp.2017.01.001.
    林晓帆, 韦岗. 一种获取非相干分布源空间分布的算法[J]. 电子与信息学报, 2014, 36(2): 260-265. doi: 10.3724/SP.J.1146. 2013.00601.
    LIN Xiaofan and WEI Gang. A method to obtain the spatial distribution of incoherently distributed sources[J]. Journal of Electronics Information Technology ,2014, 36(2): 260-265. doi: 10.3724/SP.J.1146.2013.00601.
    VALAEE S, CHAMPAGNE B, and KABAL P. Parametric localization of distributed sources[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144-2153. doi: 10.1109/78. 414777.
    MENG Y, STOICA P, and WONG K M. Estimation of the directions of arrival of spatially dispersed signals in array signal processing[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(2): 1-9. doi: 10.1049/ip-rsn:19960170.
    SHAHBAZPANAHI S, VALAEE S, and BASTANI M H. Distributed source localization using ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2169-2178. doi: 10.1109/78.950773.
    ZHENG Z and LI G. Fast DOA estimation of incoherently distributed sources by novel propagator[J]. Multidimensional Systems and Signal Processing, 2013, 24(3): 573-581. doi: 10.1007/s11045-012-0185-4.
    HASSANIEN A, SHAHBAZPANAHI S, and GERSHMAN A B. A generalized capon estimator for localization of multiple spread sources[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 280-283. doi: 10.1109/TSP.2003.820089.
    SHAHBAZPANAHI S, VALAEE S, and GERSHMAN A B. A covariance fitting approach to parametric localization of multiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing, 2004, 52(3): 592-600. doi: 10.1109/TSP.2003.822352.
    SIESKUL B T. An asymptotic maximum likelihood for joint estimation of nominal angles and angular spreads of multiple spatially distributed sources[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1534-1538. doi: 10.1109/ TVT.2009.2040006.
    杨学敏, 李广军, 郑植. 基于稀疏表示的相干分布式非圆信号的参数估计[J]. 电子与信息学报, 2014, 36(1): 164-168. doi: 10.3724/SP.J.1146.2013.00444.
    YANG Xuemin, LI Guangjun, and ZHENG Zhi. Parameters estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics Information Technology, 2014, 36(1): 164-168. doi: 10.3724 /SP.J.1146.2013.00444.
    GAN L, GU J F, and WEI P. Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique[J]. IEEE Antennas Wireless Propagation Letters, 2008, 7: 385-388. doi: 10.1109/LAWP.2008.2000875.
    尹洁昕, 吴瑛, 王鼎. 基于辅助阵元的非圆信号自校正算法及其性能分析[J]. 通信学报, 2014, 34(2): 153-165. doi: 10.3969/ j.issn.1000-436x.2014.02.020.
    YIN Jiexin, WU Ying, and WANG Ding. Auto-calibration method and performance analysis for noncircular sources based on instrumental sensors[J].Journal on Communications, 2014, 34(2): 153-165. doi: 10.3969/j.issn.1000-436x.2014.02. 020.
    ZHANG L, L W, ZHANG X, et al. 2D-DOA estimation of noncircular signals for uniform rectangular array via NC- PARAFAC method[J]. International Journal of Electronics, 2016, 103(11): 1839-1856. doi: 10.1080/00207217.2016. 1138535.
    YANG X, LI G, ZHENG Z, et al. 2D DOA estimation of coherently distributed noncircular sources[J]. Wireless Personal Communications, 2014, 78(2): 1095-1102. doi: 10.1007/s11277-014-1803-2.
    HASSEN S B, BELLILI F, SAMET A, et al. Cramer-Rao lower bounds for angular parameters estimates from incoherently distributed signals generated by noncircular sources[C]. IEEE International Conference on Ubiquitous Wireless Broadband. IEEE, Montreal, Canada, 2015: 1-5. doi: 10.1109/ICUWB.2015.7324433.
    HASSEN S B, BELLILI F, SAMET A, et al. Estimation of angular spreads and mean angles of arrival for multiple incoherently-distributed noncircular sources[C]. IEEE International Conference on Ubiquitous Wireless Broadband. IEEE, Montreal, Canada, 2015: 1-5. doi: 10.1109/ICUWB. 2015.7324449.
    YANG X, LI G, CHI C K, et al. Central DOA estimation of incoherently distributed noncircular sources with cross-correlation matrix[J]. Circuits Systems Signal Processing, 2015, 34(11): 3697-3707. doi: 0.1007/s00034-015- 0023-7.
    FERREIRA T N, CAMPOS M L R D, and NETTO S L. Covariance-based DoA estimation in a Krylov subspace[J]. Circuits Systems Signal Processing, 2015, 34(7): 2363-2379. doi: 10.1007/s00034-014-9966-3.
    黄磊, 吴顺君, 张林让, 等. 快速子空间分解方法及其维数的快速估计[J]. 电子学报, 2005, 33(6): 977-981.
    HUANG L, WU S J, ZHANG L R, et al. Fast method for subspace decomposition and its dimension estimation[J]. Acta Electronica Sinica, 2005, 33(6): 977-981.
    HUANG L, LONG T, MAO E, et al. MMSE-based MDL method for robust estimation of number of sources without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 4135-4142. doi: 10.1109/TSP.2009. 2024043.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1126) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return