Citation: | ZHANG Limin, LIU Jie, ZHONG Zhaogen. Blind Recognition of (n,1,m) Convolutional Codes Based on Modified Walsh-Hadamard Transform[J]. Journal of Electronics & Information Technology, 2018, 40(4): 839-845. doi: 10.11999/JEIT170605 |
MOOSAVI R and LARSSON E G. Fast blind recognition of channel codes[J]. IEEE Transactions on Communications, 2014, 62(5): 1393-1405. doi: 10.1109/TCOMM.2014.050614. 130297.
|
YU P D, PENG H, and LI J. On blind recognition of channel codes within a candidate set[J]. IEEE Communications Letters, 2016, 20(4): 736-739. doi: 10.1109/LCOMM.2016. 2525759.
|
CHEN W G and WU G. Blind recognition of (n-1)/n rate punctured convolutional encoders in a noisy environment[J]. Journal of Communications, 2015, 10(4): 260-267. doi: 10.12720/jcm.10.4.260-267.
|
YARDI A D, VIJAYAKUMARAN S, and KUMAR A. Blind reconstruction of binary cyclic codes from unsynchronized bit stream[J]. IEEE Transactions on Communications, 2016, 64(7): 2693-2706. doi: 10.1109/TCOMM.2016.2561931.
|
QIN J, HUANG Z, LIU C, et al. Novel blind recognition algorithm of frame synchronization words based on soft-decision in digital communication systems[J]. PLOS ONE, 2015, 10(7): 1-8. doi: 10.1371/journal.pone.0132114.
|
SOTEH A and BIZAKI H. On the analytical solution of rank problem in the convolutional code identification context[J]. IEEE Communications Letters, 2016, 20(3): 442-445. doi: 10.1109/LCOMM.2016.2519519.
|
WANG Y, WANG F H, and HUANG Z T. Blind recognition of (n,k,m) convolutional code based on local decision in a noisy environment[C]. International Conference on Automation, Mechanical Control and Computational Engineering, Jinan, China, 2015: 554-559.
|
刘建成, 杨晓静, 张玉. 基于改进欧几里德算法的(n,1,m)卷积码识别[J]. 探测与控制学报, 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015.
|
LIU Jiancheng, YANG Xiaojing, and ZHANG Yu. Recognition of (n,1,m) convolutional code based on improved Euclidean algorithm[J]. Journal of Detection & Control, 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015.
|
邹艳, 陆佩忠. 关键方程的新推广[J]. 计算机学报, 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497.
|
ZOU Yan and LU Peizhong. A new generalization of key equation[J]. Journal of Computers, 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497.
|
刘健, 王晓君, 周希元. 基于 Walsh-Hadamard 变换的卷积码盲识别[J]. 电子与信息学报, 2010, 32(4): 884-888. doi: 10.3724/SP.J.1146.2012.00497.
|
LIU Jian, WANG Xiaojun, and ZHOU Xiyuan. Blind recognition of convolutional coding based on Walsh- Hadamard transform[J]. Journal of Electronics Information Technology, 2010, 32(4): 884-888. doi: 10.3724/ SP.J.1146.2012.00497.
|
张岱, 张玉, 杨晓静, 等. 基于分段抽取软判决加权Walsh Hadamard 变换的卷积码识别算法[J]. 兵工学报, 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012.
|
ZHANG Dai, ZHANG Yu, YANG Xiaojing, et al. An algorithm for convolutional codes recognition based on sectionally extracting soft-decision weighted Walsh Hadamard transform[J]. Acta Armamentarii, 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012.
|
解辉, 王丰华, 黄知涛. 基于最大似然检测的(n,1,m)卷积码盲识别方法[J]. 电子与信息学报, 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146.2012.01578.
|
XIE Hui, WANG Fenghua, and HUANG Zhitao. Blind recognition of (n,1,m) convolutional code based on maximum likelihood detection[J]. Journal of Electronics Information Technology, 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146. 2012.01578.
|
LIN S and COSTELLOD J著. 晏坚, 何元智, 潘亚汉, 等译. 差错控制编码[M]. 北京: 机械工业出版社, 2007: 300-321.
|
LIN S and COSTELLOD J. YAN Jian, HE Yuanzhi, PAN Yahan, et al. Error Control Coding[M]. Beijing: China Machine Press, 2007: 300-321.
|
杨晓炜, 甘露. 基于Walsh-Hadamard 变换的线性分组码参数盲估计算法[J]. 电子与信息学报, 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311.
|
YANG Xiaowei and GAN Lu. Blind estimation algorithm of the linear block codes parameters based on WHT[J]. Journal of Electronics Information Technology, 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311.
|
HAYKIN S. Communication Systems[M]. New York, USA: John Wiley Sons, Inc., 2001: 349-352.
|
XIA Tian and WU H C. Novel blind identification of LDPC codes using average LLR of syndrome a posteriori probability [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 352-355. doi: 10.1109/TSP.2013.2293975.
|