Advanced Search
Volume 40 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
ZHANG Limin, LIU Jie, ZHONG Zhaogen. Blind Recognition of (n,1,m) Convolutional Codes Based on Modified Walsh-Hadamard Transform[J]. Journal of Electronics & Information Technology, 2018, 40(4): 839-845. doi: 10.11999/JEIT170605
Citation: ZHANG Limin, LIU Jie, ZHONG Zhaogen. Blind Recognition of (n,1,m) Convolutional Codes Based on Modified Walsh-Hadamard Transform[J]. Journal of Electronics & Information Technology, 2018, 40(4): 839-845. doi: 10.11999/JEIT170605

Blind Recognition of (n,1,m) Convolutional Codes Based on Modified Walsh-Hadamard Transform

doi: 10.11999/JEIT170605
Funds:

The National Natural Science Foundation of China (91538201), The Special Fund of Taishan Scholars Project (st201511020)

  • Received Date: 2017-06-23
  • Rev Recd Date: 2017-11-21
  • Publish Date: 2018-04-19
  • Considering the blind recognition of (n,1,m) convolutional codes at high bit error rate, a novel method based on modified Walsh-Hadamard Transform (WHT) is presented. First, the original issue is equivalent to the blind recognition of several 1/2 rate convolutional codes, and a system of linear equations for generating polynomial coefficients is established. Disadvantages of the existing methods based on WHT are analyzed, after which a more robust decision threshold is deduced, with a reduction in computational complexity by limiting the range of roots, and then the code length is recognized while the correct solution vector is found. Finally, the generator polynomial matrix of (n,1,m) convolutional codes is obtained by combining the generator polynomial of the equivalent 1/2 rate convolutional codes. The simulation results verify the effectiveness of the proposed method, which has a better performance when comparing to the traditional method.
  • loading
  • MOOSAVI R and LARSSON E G. Fast blind recognition of channel codes[J]. IEEE Transactions on Communications, 2014, 62(5): 1393-1405. doi: 10.1109/TCOMM.2014.050614. 130297.
    YU P D, PENG H, and LI J. On blind recognition of channel codes within a candidate set[J]. IEEE Communications Letters, 2016, 20(4): 736-739. doi: 10.1109/LCOMM.2016. 2525759.
    CHEN W G and WU G. Blind recognition of (n-1)/n rate punctured convolutional encoders in a noisy environment[J]. Journal of Communications, 2015, 10(4): 260-267. doi: 10.12720/jcm.10.4.260-267.
    YARDI A D, VIJAYAKUMARAN S, and KUMAR A. Blind reconstruction of binary cyclic codes from unsynchronized bit stream[J]. IEEE Transactions on Communications, 2016, 64(7): 2693-2706. doi: 10.1109/TCOMM.2016.2561931.
    QIN J, HUANG Z, LIU C, et al. Novel blind recognition algorithm of frame synchronization words based on soft-decision in digital communication systems[J]. PLOS ONE, 2015, 10(7): 1-8. doi: 10.1371/journal.pone.0132114.
    SOTEH A and BIZAKI H. On the analytical solution of rank problem in the convolutional code identification context[J]. IEEE Communications Letters, 2016, 20(3): 442-445. doi: 10.1109/LCOMM.2016.2519519.
    WANG Y, WANG F H, and HUANG Z T. Blind recognition of (n,k,m) convolutional code based on local decision in a noisy environment[C]. International Conference on Automation, Mechanical Control and Computational Engineering, Jinan, China, 2015: 554-559.
    刘建成, 杨晓静, 张玉. 基于改进欧几里德算法的(n,1,m)卷积码识别[J]. 探测与控制学报, 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015.
    LIU Jiancheng, YANG Xiaojing, and ZHANG Yu. Recognition of (n,1,m) convolutional code based on improved Euclidean algorithm[J]. Journal of Detection & Control, 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015.
    邹艳, 陆佩忠. 关键方程的新推广[J]. 计算机学报, 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497.
    ZOU Yan and LU Peizhong. A new generalization of key equation[J]. Journal of Computers, 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497.
    刘健, 王晓君, 周希元. 基于 Walsh-Hadamard 变换的卷积码盲识别[J]. 电子与信息学报, 2010, 32(4): 884-888. doi: 10.3724/SP.J.1146.2012.00497.
    LIU Jian, WANG Xiaojun, and ZHOU Xiyuan. Blind recognition of convolutional coding based on Walsh- Hadamard transform[J]. Journal of Electronics Information Technology, 2010, 32(4): 884-888. doi: 10.3724/ SP.J.1146.2012.00497.
    张岱, 张玉, 杨晓静, 等. 基于分段抽取软判决加权Walsh Hadamard 变换的卷积码识别算法[J]. 兵工学报, 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012.
    ZHANG Dai, ZHANG Yu, YANG Xiaojing, et al. An algorithm for convolutional codes recognition based on sectionally extracting soft-decision weighted Walsh Hadamard transform[J]. Acta Armamentarii, 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012.
    解辉, 王丰华, 黄知涛. 基于最大似然检测的(n,1,m)卷积码盲识别方法[J]. 电子与信息学报, 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146.2012.01578.
    XIE Hui, WANG Fenghua, and HUANG Zhitao. Blind recognition of (n,1,m) convolutional code based on maximum likelihood detection[J]. Journal of Electronics Information Technology, 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146. 2012.01578.
    LIN S and COSTELLOD J著. 晏坚, 何元智, 潘亚汉, 等译. 差错控制编码[M]. 北京: 机械工业出版社, 2007: 300-321.
    LIN S and COSTELLOD J. YAN Jian, HE Yuanzhi, PAN Yahan, et al. Error Control Coding[M]. Beijing: China Machine Press, 2007: 300-321.
    杨晓炜, 甘露. 基于Walsh-Hadamard 变换的线性分组码参数盲估计算法[J]. 电子与信息学报, 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311.
    YANG Xiaowei and GAN Lu. Blind estimation algorithm of the linear block codes parameters based on WHT[J]. Journal of Electronics Information Technology, 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311.
    HAYKIN S. Communication Systems[M]. New York, USA: John Wiley Sons, Inc., 2001: 349-352.
    XIA Tian and WU H C. Novel blind identification of LDPC codes using average LLR of syndrome a posteriori probability [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 352-355. doi: 10.1109/TSP.2013.2293975.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1306) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return