Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
YUE Zhe, LIAN Baowang, TANG Chengkai. A GPS/INS Integrated Navigation Method Based on Weighting Adaptive Square-root Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(3): 565-572. doi: 10.11999/JEIT170597
Citation: YUE Zhe, LIAN Baowang, TANG Chengkai. A GPS/INS Integrated Navigation Method Based on Weighting Adaptive Square-root Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(3): 565-572. doi: 10.11999/JEIT170597

A GPS/INS Integrated Navigation Method Based on Weighting Adaptive Square-root Cubature Kalman Filter

doi: 10.11999/JEIT170597
Funds:

The National Natural Science Foundation of China (61301094, 61473308, 61501430)

  • Received Date: 2017-06-22
  • Rev Recd Date: 2017-11-23
  • Publish Date: 2018-03-19
  • In the GPS/INS integrated navigation system, the filtering precision of Square-root Cubature Kalman Filter (SCKF) will decrease or even diverge resulting from the uncertainty of the measured noise statistics, therefore, a Weighting Aaptive Square-root Cubature Kalman Filter (WASCKF) method is proposed in this paper. Firstly, the moving window method is employed to conduct the maximum likelihood estimation of the covariance matrix of SCKF, in order to realize the on-line adjustment of the statistical characteristics of the measured noise. Then, the weighting theory is utilized to set the corresponding weights according to the usefulness of the information at different times in the window, thus it takes great use of effective information in the window. Finally, the WASCKF is applied to the GPS/INS integrated navigation system for simulation and verification, and comparing with the SCKF and ASCKF methods. The results indicate that the mean square root of velocity errors and position errors of the proposed method are less than SCKF and ASCKF, and it can effectively improve the adaptive capability and navigation performance of GPS/INS integrated navigation system with the measured noise uncertainty.
  • loading
  • TSENG Chienhao, LIN Shengfuu, and JWO Dahjing. Fuzzy adaptive cubature Kalman filter for integrated navigation systems[J]. Sensors, 2016, 16(8): 1167-1189. doi: 10.3390/ s16081167.
    LI Zengke, WANG Jingxiang, WANG Jian, et al. PPP/INS tightly coupled navigation using adaptive federated filter[J]. GPS Solutions, 2017, 21(1): 1-12. doi: 10.1007/s10291-015- 0511-z.
    WANG Liansheng and XIA Yuanqing. Mars Entry Navigation with uncertain parameters based on desensitized extended Kalman filter[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 998-1005. doi: 10.1109/TII.2015. 2463763.
    LI Donggong, JI Daxiong, LIU Jian, et al. A Multi-model EKF integrated navigation algorithm for deep water AUV[J]. International Journal of Advanced Robotic Systems, 2016, 13(1): 1-15. doi: 10.5772/62076.
    YAZDKHASTI S, SASIADEK J, and ULRICH S. Performance enhancement for GPS/INS fusion by using a fuzzy adaptive unscented Kalman filter[C]. 2016 21st International Conference on Methods and Models in Automation and Robotics, Poland, 2016: 1194-1199. doi: 10.1109/MMAR.2016.7575308.
    LI Kailong, CHANG Lubin, and HU Baiqing. A variational bayesian-based unscented Kalman filter with both adaptivity and robustness[J]. IEEE Sensors Journal, 2016, 16(18): 6966-6976. doi: 10.1109/JSEN.2016.2591260.
    ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 510-518. doi: 10.1109/TAC.2009.2019800.
    XU Bo, ZHANG Peng, WEN Hongzhi, et al. Stochastic stability and performance analysis of Cubature Kalman Filter[J]. Neurocomputing, 2015, 186: 218-227. doi: 10.1016 /j.neucom.2015.12.087.
    CHANDRA K, GU D, and POSTLETHWAITE I. Square root cubature information filter[J]. IEEE Sensors Journal, 2013, 13(2): 750-758. doi: 10.1109/JSEN.2012.2226441.
    WANG Dingjie, L Hanfeng, and WU Jie. Augmented cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with non-additive noise[J]. Measurement Journal of the International Measurement Confederation, 2017, 97: 111-125. doi: 10.1016/j.measurement.2016.10.056.
    CUI Bingbo, CHEN Xiyuan, and TANG Xinhua. Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2975-2987. doi: 10.1109/TSP.2017.267968.
    JIANG Changhui, CHEN Shuai, BO Yuming, et al. Performance improvement of GPS/SINS ultra-tightly integrated navigation system utilizing a robust Cubature Kalman Filter[J]. Journal of Aeronautics, Astronautics and Aviation, 2017, 49(1): 49-55. doi: 10.6125/16-1201-916.
    SHI Yuepeng, CHE Lei, GE Quanbo, et al. Adaptive high-degree Cubature Kalman Filter with unknown noise statistics[J]. Journal of Information and Computational Science, 2014, 11(18): 6703-6712. doi: 10.12773/jics20105083.
    JIANG Chen, ZHANG Shubi, and ZHANG Qiuzhao. A novel robust interval Kalman filter algorithm for GPS/INS integrated navigation[J]. Journal of Sensors, 2016, 2016: ID 3727241. doi: 10.1155/2016/3727241.
    YUE Zhe, LIAN Baowang, and TANG Chengkai. The GPS/INS integrated navigation method based on adaptive SSR-SCKF cubature Kalman filter[C]. The 8th China Satellite Navigation Conference, Shanghai, 2017: 395-405. doi: 10.1007/978-981-10-4591-2_32.
    胡宇, 张世英, 罗雷. 基于自适应容积卡尔曼滤波方法的涡扇发动机气路部件故障诊断[J]. 航空动力学报, 2016, 31(5): 1260-1267. doi: 10.13224/j.cnki.jasp.2016.05.030.
    HU Yu, ZHANG Shiying, and LUO Lei. Turbofan engine gas path components fault diagnosis based on adaptive cubature Kalman filter[J]. Journal of Aerospace Power, 2016, 31(5):
    YANG Yuanxi and ZHANG Shuangcheng. Adaptive fitting of systematic errors in navigation[J]. Journal of Geodesy, 2005, 79(1): 43-49. doi: 10.1007/s00190-005-0441-6.
    GAO Shesheng, HU Gaoge, and ZHONG Yongmin. Window and random weighting-based adaptive unscented Kalman filter[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29: 201-223. doi: 10.1002/acs.2467.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1571) PDF downloads(318) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return