Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
OU Guojian, JIANG Qingping, QING Changchun. A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace[J]. Journal of Electronics & Information Technology, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593
Citation: OU Guojian, JIANG Qingping, QING Changchun. A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace[J]. Journal of Electronics & Information Technology, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593

A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace

doi: 10.11999/JEIT170593
Funds:

The project of ChongQing municipal education Commission (KJ1602909, KJ1503004), The National Natural Science Foundation of China (61371164), Intelligent Robot Techndogy Research Center of Electronic Engineering (XJPT201705)

  • Received Date: 2017-06-21
  • Rev Recd Date: 2017-11-29
  • Publish Date: 2018-03-19
  • In view of the defect for large number of atoms in the over-complete dictionary during sparse decomposition, this paper presents a fast sparse decomposition algorithm for three-order polynomial phase signal based on subspace. According to the characteristic of three-order polynomial phase signal, the original signal is transformed into two subspace signals, then the atoms are structured based on the two subspace signals in the over-complete dictionary, and the two subspace signals are sparsely decomposed by using orthogonal matching pursuit algorithm. Finally, the sparse decomposition for the original signal is completed by using the theory of the sparse decomposition. In the algorithm, three-order polynomial phase signal is transformed into two subspace signals, and two over-complete dictionaries are structured based on the two subspace signals. Compared to one over-complete dictionary, the atoms are reduced enormously by using two over-complete dictionaries in the algorithm, and one matching atom can be obtained in one over-complete dictionary when another matching atom in another over-complete dictionary is obtained by using fast Fourier transform. Therefore the method can sparsely decompose three-order polynomial phase signal with low computational complexity by reducing the atoms and using fast Fourier transform. Simulation results show that the computational efficiency of the proposed method is better than that of using Gabor atoms, genetic algorithm and the algorithm based on modulation correlation partition, and the sparsity is better.
  • loading
  • OU G J , YANG S Z, DENG J X, et al. A refined estimator of multicomponent third-Order polynomial phase signals[J]. IEICE Transactions on Communications, 2016,E99-B(1): 143-151. doi: 10.1587/transcom.2015EBP3131.
    DJUROVI I and SIMEUNOVI M. Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD[J]. Signal Processing, 2015, 106(1): 253-258. doi: 10.1016/j.sigpro.2014.08.007.
    SIMEUNOVI M and DJUROVI I. Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 771-782. doi: 10.1109/TSP.2015.2491887.
    DENG Z, XU R, ZHANG Y, et al. Compound time-frequency domain method for estimating parameters of uniform- sampling polynomial-phase signals on the entire identifiable region[J]. IET Signal Processing, 2016, 10(7): 743-751. doi: 10.1049/iet-spr.2015.0361.
    RAKOVI P, SIMEUNOVI M, and DJUROVI I. On improvement of joint estimation of DOA and PPS coefficients impinging on ULA[J]. Signal Processing, 2017, 134: 209-213. doi: 10.1016/j.sigpro.2016.12.015.
    LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar Sonar Naving, 2008, 2(6): 395-403. doi: 10.1049/iet-rsn: 20070101.
    WANG Yong and JIANG Yicheng. ISAR imaging of a ship target using product high-order matched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 658-661. doi: 10.1109/LGRS.2009.2013876.
    OSHEA P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393. doi: 10.1109/TSP.2003.821097.
    欧国建, 杨士中, 蒋清平, 等. 一种三阶多项式相位信号去噪的字典学习算法[J]. 电子与信息学报, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726.
    OU G J, YANG S Z, JIANG Q P, et al. A dictionary learning algorithm for denoising cubic phase signal[J]. Journal of Electronics Information Technology, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726.
    JAFARI M G and PLUMBLEY M D. Fast dictionary learning for sparse representations of speech signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1025-1031. doi: 10.1109/JSTSP.2011.2157892.
    ZHAO Y, WU Z, YANG Z, et al. A novel signal sparse decomposition based on modulation correlation partition[J]. Neurocomputing, 2016, 171(1): 736-743. doi: 10.1016/j.neucom.2015.07.013.
    MOHAMMADI M R, FATEMIZADEH E, and MAHOOR M H. Non-negative sparse decomposition based on constrained smoothed norm[J]. Signal Processing, 2014, 100: 4250. doi: 10.1016/j.sigpro.2014.01.010.
    MARTI-LOPEZA F and KOENIGB T. Approximating method of frames[J]. Digital Signal Processing, 2003, 13(3): 519-529. doi: 10.1016/S1051-2004(02)00024-6.
    GORODNITSKY I F and BHASKAR D R. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. doi: 10.1109/78.558475.
    CHEN S, DONOHO D, and SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61. doi: 10.1137/S1064827596304010.
    MOHAMED A and DAVATZIKOS C. Shape representation via best orthogonal basis selection[C]. International Conference on Medical Image Computing Computer- Assisted Intervention, 2004, 3216: 225-233. doi: 10.1007/978-3-540-30135-6_28.
    MALLAT S and ZHANG Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082.
    赵学军, 李育珍, 雷书彧. 基于遗传算法优化的稀疏表示图像融合算法[J]. 北京邮电大学学报, 2016, 39(2): 73-76. doi: 10.13190/j.jbupt.2016.02.015.
    ZHAO Xuejun, LI Yuzhen and LEI Shuyu. An Image fusion method with sparse representation based on genetic algorithm optimization[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2): 73-76. doi: 10. 13190/j.jbupt.2016.02.015.
    全盛荣, 张天骐, 王俊霞, 等. 基于稀疏分解的SFM信号的时频分析方法[J]. 电子技术应用, 2016, 42(6): 87-90. doi: 10. 16157/j.issn.0258-7998.2016.06.024.
    QUAN Shengrong, ZHANG Tianqi, WANG Junxia, et al. A new time-frequency analysis method of sinusoidal frequency modulation signals based on sparse decomposition[J]. Application of Electronic Technique, 2016, 42(6): 87-90. doi: 10.16157/j.issn.0258-7998.2016.06.024.
    李应, 陈秋菊. 基于优化的正交匹配追踪声音事件识别[J]. 电子与信息学报, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120.
    LI Ying and CHEN Qiuju. Sound event recognition based on optimized orthogonal matching pursuit[J]. Journal of Electronics Information Technology, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120.
    王丽, 冯燕. 基于粒子群优化的图像稀疏分解算法研究[J]. 计算机仿真, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080.
    WANG Li and FENG Yan. Sparse decomposition of images based on particle swarm optimization[J]. Computer Simulation, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080.
    王在磊, 和红杰, 王建英, 等. 基于核心原子库和FHT的图像MP稀疏分解快速算法[J]. 铁道学报, 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009.
    WANG Zailei, HE Hongjie, WANG Jianying, et al. Fast algorithm for image MP sparse decomposition based on FHT and core dictionary[J]. Journal of the China Railway Society, 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009.
    邵君, 尹忠科, 王建英, 等. 信号稀疏分解中过完备原子库的集合划分[J]. 铁道学报, 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015.
    SHAO Jun, YIN Zhongke, WANG Jianying, et al. Set partitioning of the over-complet dictionary in signal sparse decomposition[J]. Journal of the China Railway Society, 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015.
    王聪, 徐敏强, 李志成. 齿轮箱故障诊断中的正交匹配追踪算法[J]. 哈尔滨工业大学学报 , 2017, 49(4): 126-130. doi: 10. 11918/j.issn.0367-6234.201505053.
    WANG Cong, XU Minqiang, and LI Zhicheng. Gearbox fault diagnosis based on orthogonal matching pursuit algorithm[J]. Journal of Harbin of Technology, 2017, 49(4): 126-130. doi: 10.11918/j.issn.0367-6234.201505053.
    WU Y, SO H C, and LIU H. Subspace-based algorithm for parameter estimation of polynomial phase signals[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4977-4983. doi: 10.1109/TSP.2008.927457.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1212) PDF downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return