Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
Citation: WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592

Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences

doi: 10.11999/JEIT170592
Funds:

The National Natural Science Foundation of China (61672202, 61432004, 61300119), The National Natural Science Foundation of China -Shenzhen Joint Foundation (Key Project) (U1613217), Open foundation of ?The Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province (JSWLW-2017-017)

  • Received Date: 2017-06-20
  • Rev Recd Date: 2017-11-28
  • Publish Date: 2018-03-19
  • For facial expression recognition based on video sequences, the changing information of facial regions along the time axis can be described by dynamic descriptors more effectively than static descriptors. This paper proposes an expression recognition method based on the dynamic texture and motion information, learning from the principle of Local Binary Pattern on Three Orthogonal Planes (LBP-TOP), Spatio-Temporal Weber Local Descriptor (STWLD) is proposed to describe the dynamic texture feature information of the facial expression sequence. Moreover, using Block-based Histogram of Optical Flow features (BHOF), the motion information can be described. Through the combination of the dynamic texture and motion information, and finally SVM is applied to complete the expression classification. The results of the cross experiments on the CK + and MMI expression database show that the method achieves better performance than methods using the single descriptors. The comparison experiments with other related methods also prove the superiority of the method.
  • loading
  • CHEON Y and KIM D. Natural facial expression recognition using differential-AAM and manifold learning[J]. Pattern Recognition, 2009, 42(7): 1340-1350. doi: 10.1016/j.patcog. 2008.10.010.
    PAN Z, POLCEANU M, and LISETTI C. On constrained local model feature normalization for facial expression recognition[C]. International Conference on Intelligent Virtual Agents. Los Angeles, CA, USA, 2016: 369-372. doi: 10.1007/978-3-319-47665-0_35.
    ZHU X and RAMANAN D. Face detection, pose estimation, and landmark localization in the wild[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 2879-2886. doi: 10.1109 /CVPR.2012.6248014.
    ZHAO L, WANG Z, and ZHANG G. Facial expression recognition from video sequences based on spatial-temporal motion local binary pattern and Gabor multiorientation fusion histogram[J]. Mathematical Problems in Engineering, 2017, (1): 1-12. doi: 10.1155/2017/7206041.
    ZHOU J, ZHANG S, MEI H, et al. A method of facial expression recognition based on Gabor and NMF[J]. Pattern Recognition and Image Analysis, 2016, 26(1): 119-124. doi: 10.1134/S1054661815040070.
    CHEN J, SHAN S, HE C, et al. WLD: A robust local image descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720. doi: 10.1109/ TPAMI.2009.155.
    ZHAO G and PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928. doi: 10.1109/ TPAMI.2007.111.
    付晓峰, 付晓鹃, 李建军, 等. 视频序列中基于多尺度时空局部方向角模式直方图映射的表情识别[J]. 计算机辅助设计与图形学学报, 2015, 27(6): 1060-1066.
    FU Xiaofeng, FU Xiaojuan, LI Jianjun, et al. Facial expression recognition using multi-scale spatiotemporal local orienta-tional pattern histogram projection in video sequences[J]. Journal of Computer Aided Design Computer Graphics, 2015, 27(6): 1060-1066.
    KAMAROL S K A, JAWARD M H, PARKKINEN J, et al. Spatiotemporal feature extraction for facial expression recognition[J]. IET Image Processing, 2016, 10(7): 534-541. doi: 10.1049/iet-ipr.2015.0519.
    MEINHARDT-Llopis E, P?REZ J S, and KONDERMANN D. Horn-schunck optical flow with a multi-scale strategy[J]. Image Processing on Line, 2013, 20: 151-172. doi: 10.5201/ ipol.2013.20.
    张轩阁, 田彦涛, 颜飞, 等. 基于全局光流特征的微表情识别[J]. 模式识别与人工智能, 2016, 29(8): 760-768. doi: 10.16451 /j.cnki.issn1003-6059.201608011.
    ZHANG Xuange, TIAN Yantao, YAN Fei, et al. Micro- expression recognition based on global optical flow feature[J]. Pattern Recognition and Artificial Intelligence. 2016, 29(8): 760-768. doi: 10.16451/j.cnki.issn1003-6059.201608011.
    YACOOB Y and DAVIS L S. Recognizing human facial expressions from long image sequences using optical flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6): 636-642. doi: 10.1109/34.506414.
    LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), California, USA, 2010: 94-101. doi: 10.1.1.182.3759.
    PANTIC M, VALSTAR M, RADEMAKER R, et al. Web-based database for facial expression analysis[C]. IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 2005: 317-321. doi: 10.1109/ ICME.2005.1521424.
    邱玉, 赵杰煜, 汪燕芳. 结合运动时序性的人脸表情识别方法[J]. 电子学报, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn. 0372-2112.2016.06.007.
    QIU Yu, ZHAO Jieyu, and WANG Yanfang. Facial expression recognition using temporal relations among facial movements[J]. Acta Electronica Sinica, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn.0372-2112.2016.06.007.
    FAN X and TJAHJADI T. A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences[J]. Pattern Recognition, 2015, 48(11): 3407-3416. doi: 10.1016/j.patcog. 2015.04.025.
    LONG F and BARTLETT M S. Video-based facial expression recognition using learned spatiotemporal pyramid sparse coding features[J]. Neurocomputing, 2016, 173: 2049-2054. doi: 10.1016/j.neucom.2015.09.049
    GUPTA O, RAVIV D, and RASKAR R. Multi-velocity neural networks for facial expression recognition in videos[J]. IEEE Transactions on Affective Computing, 1949, 99: 1.
    FANG H, MAC Parthalin N, AUBREY A J, et al. Facial expression recognition in dynamic sequences: An integrated approach[J]. Pattern Recognition, 2014, 47(3): 1271-1281. doi: 10.1016/j.patcog.2013.09.023.
    WANG Z, WANG S, and Ji Q. Capturing complex spatio- temporal relations among facial muscles for facial expression recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA. 2013: 3422-3429. doi: 10.1109/CVPR.2013.439.
    JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 2983-2991. doi: 10.1109/ICCV.2015.341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (987) PDF downloads(301) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return