Citation: | GUO Limin, KOU Yunhan, CHEN Tao, ZHANG Ming. Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588 |
SCHLEHER D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3-6. doi: 10.1109/MAES.2006.1635166.
|
PHILLIP E P. Detecting and Classifying Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
|
王星, 周一鹏, 周东青, 等. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
|
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, et al. Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice[J]. Journal of Electronics Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
|
LUNDEN J and KOIVUNEN V. Automatic radar waveform recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 124-136. doi: 10.1109/JSTSP.2007. 897055.
|
ZHANG Ming, LIU Lutao, DIAO Ming, et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16(10): 1682-1706. doi: 10.3390/s16101682.
|
HINTON G, OSINDERO S, TEH Y W, et al. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
|
BENGIO Y, LAMBIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems, Hyatt Regency Vancouver, 2007: 153-160.
|
LECUN Y, BENGIO Y, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
|
NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72(2011): 1-19. doi: 10.1371/journal.pone.0006098.
|
TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442. doi: 10.1109/LGRS.2015.2482520.
|
ZHANG Lu, MA Wenping, ZHANG Dan, et al. Stacked sparse autoencoder in PolSAR data classification using local spatial information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1359-1363. doi: 10.1109/LGRS.2016. 2586109.
|
SUN Wenjun, SHAO Siyu, ZHAO Rui, et al. A sparse auto- encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89: 171-178. doi: 10.1016/j.measurement.2016.04007.
|
FENG Zhipeng, LIANG Ming, CHU Fulei, et al. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. doi: 10.1016/j.ymssp.2013.01017.
|