Advanced Search
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
TIAN Wei, HUANG Gaoming. Robust Multisensor Bias Estimation Under Nonideal Association[J]. Journal of Electronics & Information Technology, 2018, 40(3): 641-647. doi: 10.11999/JEIT170579
Citation: TIAN Wei, HUANG Gaoming. Robust Multisensor Bias Estimation Under Nonideal Association[J]. Journal of Electronics & Information Technology, 2018, 40(3): 641-647. doi: 10.11999/JEIT170579

Robust Multisensor Bias Estimation Under Nonideal Association

doi: 10.11999/JEIT170579
Funds:

The 61st Genernal Program Supportting Fund of China Postdoctoral Science Foundation (2017M613370)

  • Received Date: 2017-06-14
  • Rev Recd Date: 2017-11-17
  • Publish Date: 2018-03-19
  • In the data fusion system, sensor biases lead to systematic deviation of the position states of targets reported to the fusion center. If sensor biases could not be estimated and compensated correctly, the fusion system will fail to achieve the expected performance superiority. However, the starting point of sensor bias estimation is the overdetermined equations construted on the biasis of data association. In the complicated environment, with the presence of interference factors such as random errors, sensor biases, false alarms and missed detections, the data association module outputs some misassociations inevitably. In view of the multisensor bias estimation problem under nonideal association, the robust estimation approach based on the least trimmed squares is proposed. Furthermore, the reweighted least squares apporach through eliminating abnormal equations is presented. Compared with the least squares and the least median of squares, the proposed approaches can not only ensure the robust performance on bias estimation, but also are less sensitive to random errors. Simulation results verify the effectiveness of the proposed methods.
  • loading
  • 田威. 复杂环境下多传感器航迹关联与抗差处理[D]. [博士论文], 清华大学, 2014: 1-37.
    CHANDRASEKARAN B, GANGADHAR S, and CONRAD J M. A survey of multisensor fusion techniques, architectures and methodologies[C]. IEEE SoutheastCon., Charlotte, NC, USA, 2017: 1-8. doi: 10.1109/SECON.2017.7925311.
    TIAN Wei. Multisensor track-to-track association and bias removal in complex environments[D]. [Ph.D. dissertation], Tsinghua University, 2014: 1-37.
    TAGHAVI E, THARMARASA R, KIRUBARAJAN T, et al. A practical bias estimation algorithm for multisensor- multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 2-19. doi: 10.1109/TAES. 2015.140574.
    COWLEY B C and SHAFAI B. Registration in multi-sensor data fusion and tracking[C]. Proceedings of American Control Conference, San Francisco, CA, 1993: 875-879.
    ZHOU Yifeng, LEUNG H, and YIP P C. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Transactions on Signal Processing, 1997, 45(6): 1560-1573. doi: 10.1109/78.599998.
    ZHENG Ziwei and ZHU Yisheng. New least squares registration algorithm for data fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1410-1416. doi: 10.1109/TAES.2004.1386893.
    OKELLO N and RISTIO B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1074-1083. doi: 10.1109/TAES.2003.1238759.
    FORTUNATI S, FARINA A, GINI F, et al. Least squares estimation and Cramer-Rao type lower bounds for relative sensor registration process[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1075-1085. doi: 10.1109/TSP.2010. 2097258.
    FORTUNATI S, GINI F, GRECO M, et al. Least squares estimation and hybrid Cramr-Rao lower bound for absolute sensor registration[C]. Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italy, 2012: 30-35. doi: 10.1109/TyWRRS.2012.6381098.
    FORTUNATI S, GINI F, FARINA A, et al. On the application of the expectation- maximisation algorithm to the relative sensor registration problem [J]. IET Radar, Sonar Navigation, 2013, 7(2): 191-203. doi: 10.1049/iet-rsn.2012. 0050.
    LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Multisensor multitarget bias estimation for general asynchronous sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 899-921. doi: 10.1109/ TAES.2005.1541438.
    PU Wenqiang, LIU Yafeng, YAN Junkun, et al. A two-stage optimization approach to the asynchronous multi-sensor registration problem[C]. International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017: 3271-3275. doi: 10.1109/ICASSP. 2017.7952761.
    GENG Hang, LIANG Yan, LIU Yurong, et al. Bias estimation for asynchronous multi-rate multi-sensor fusion with unknown inputs[J]. Information Fusion, 2018, 39: 139-153. doi: 10.1016/j.inffus.2017.03.002.
    TIAN Wei, WANG Yue, DU Xiongjie, et al. Reference pattern-based track-to-track association with biased data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 501-512. doi: 10.1109/TAES.2015.140433.
    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Track-to- track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449-453. doi: 10.1109/LSP.2014.2305305.
    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Analytic performance prediction of track-to-track association with biased data in multi-sensor multi-target tracking scenarios[J]. Sensors, 2013, 13(9): 12244-12265. doi: 10.3390/S130912244.
    田威, 王钺, 山秀明, 等. 基于一致关联数最大化的航迹关联算法[J]. 航空学报, 2014, 35(11): 3115-3122. doi: 10.7527/ s1000-6893.
    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Track-to- track association based on maximizing the consistent association number[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3115-3122. doi: 10.7527/s1000-6893.
    田威, 王钺, 山秀明, 等. 稳健的联合航迹关联与系统误差估计[J]. 清华大学学报(自然科学版), 2013, 53(7): 946-950. doi: 10.16511/j.cnki.qhdxxb.2013.07.009.
    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Robust method for joint track association and sensor bias estimation [J]. Journal of Tsinghua University (Science and Technology), 2013, 53(7): 946-950. doi: 10.16511/j.cnki.qhdxxb.2013.07. 009.
    田威, 王钺, 山秀明, 等. 基于系统误差估计残差的错误关联检测方法[J]. 系统工程与电子技术, 2013, 35(10): 2062-2068. doi: 10.3969/j.issn.1001-506X.2013.10.08.
    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Misassociation detection method based on the residual errors of system bias estimation[J]. Systems Engineering and Electronics, 2013, 35(10): 2062-2068. doi: 10.3969/j.issn. 1001-506X.2013.10.08.
    LIN Xiangdong, KIRUBARAJAN T, and BAR-SHALOM Y. Multisensor bias estimation using local tracks without a priori association[C]. Proceedings of SPIE, Bellingham, WA, 2003, 5204: 334-345. doi: 10.1117/12.503715.
    ROUSSEEUW P J, LEROY AM, and WILEY J. Robust Regression and Outlier Detection[M]. New York: Wiley Online Library, 1987: 1-18.
    WENG Yang, NEGI R, LIU Qixing, et al. Robust state- estimation procedure using a Least Trimmed Squares pre- processor[C]. 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), Anaheim, CA, USA, 2011: 1-6. doi: 10.1109/ISGT.2011.5759135.
    TIAN Xin and BAR-SHALOM Y. Sliding window test vs. single time test for track-to-track association[C]. IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1-8.
    KAPLAN L M, BAR-SHALOM Y, and BLAIR W D. Assignment costs for multiple sensor track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 655-677. doi: 10.1109/TAES. 2008.4560213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1108) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return